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ABSTRACT

Computed tomography (CT) is routinely used for diagnosing lung disease and

developing treatment plans using images of intricate lung structure with submillimeter

resolution. Automated segmentation of anatomical structures in such images is

important to enable efficient processing in clinical and research settings. Convolution

neural networks (ConvNets) are largely successful at performing image segmentation

with the ability to learn discriminative abstract features that yield generalizable

predictions. However, constraints in hardware memory do not allow deep networks

to be trained with high-resolution volumetric CT images. Restricted by memory

constraints, current applications of ConvNets on volumetric medical images use a

subset of the full image; limiting the capacity of the network to learn informative

global patterns. Local patterns, such as edges, are necessary for precise boundary

localization, however, they suffer from low specificity. Global information can disambiguate

structures that are locally similar.

The central thesis of this doctoral work is that both local and global information

is important for segmentation of anatomical structures in medical images. A novel

multi-scale ConvNet is proposed that divides the learning task across multiple networks;

each network learns features over different ranges of scales. It is hypothesized that

multi-scale ConvNets will lead to improved segmentation performance, as no compromise

needs to be made between image resolution, image extent, and network depth. Three

multi-scale models were designed to specifically target segmentation of three pulmonary
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structures: lungs, fissures, and lobes.

The proposed models were evaluated on a diverse datasets and compared

to architectures that do not use both local and global features. The lung model

was evaluated on humans and three animal species; the results demonstrated the

multi-scale model outperformed single scale models at different resolutions. The

fissure model showed superior performance compared to both a traditional Hessian

filter and a standard U-Net architecture that is limited in global extent.

The results demonstrated that multi-scale ConvNets improved pulmonary CT

segmentation by incorporating both local and global features using multiple ConvNets

within a constrained-memory system. Overall, the proposed pipeline achieved high

accuracy and was robust to variations resulting from different imaging protocols,

reconstruction kernels, scanners, lung volumes, and pathological alterations; demonstrating

its potential for enabling high-throughput image analysis in clinical and research

settings.
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PUBLIC ABSTRACT

Convolution neural networks (ConvNets) are largely successful at performing

image segmentation with the ability to learn complex and discriminative patterns

in image data. Constraints in hardware memory do not allow deep networks to be

trained with large images, such as volumetric medical images. Restricted by memory

constrains, current applications of ConvNets on volumetric medical images use a

subset of the full image; limiting the capacity of the network to learn informative

global patterns. Local patterns, such as edges, are necessary for precise boundary

localization, however, they suffer from low specificity. Global information can help

disambiguate structures that have similar local appearance. The central thesis of

this doctoral work is that both local and global image patterns are important for

segmentation of anatomical structures in medical images. A novel multi-scale ConvNet

is proposed that divides the learning task across multiple networks; each network

learns features over different ranges of scales. Three multi-scale models were designed

to target segmentation of three pulmonary structures: lungs, fissures, and lobes. The

results demonstrated that multi-scale ConvNets improved pulmonary CT segmentation

by incorporating both local and global features using multiple ConvNets within a

constrained-memory system. Overall, the proposed pipeline achieved high accuracy

and was robust to variations resulting from different imaging protocols, reconstruction

kernels, scanners, lung volumes, and pathological alterations; demonstrating its potential

for enabling high-throughput image analysis in clinical and research settings.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Specific Aims

Medical imaging applies principles of electromagnetic radiation and inverse

problem solving to noninvasively reconstruct spatially varying physical properties of

the anatomy. Medical imaging is an invaluable tool for diagnosing diseases, developing

and guiding treatment interventions, and monitoring progression of disease. There

are various imaging modalities which make use of physical phenomena to measure

structural or functional information inside the body. Computed tomography (CT)

imaging is commonly used to image the lungs as it is capable of producing high-resolution

images with soft tissue contrast. Technological advancements in CT imaging have

made it possible to generate images with submillimeter spatial resolution in less

than a second. Furthermore, the emergence of 4DCT imaging enables acquisition

of temporally resolved images for tracking thoracic motion during breathing. With

the increasing prevalence of lung disease there is an increase in the number of thoracic

CT scans being acquired in clinical and research environments. This provides a rich

source of information for characterizing lung disease and its progression. However,

the amount of data that is being produced imposes a high demand on radiologists to

manually read and extract relevant information in these large scans. Computer-aided

algorithms have great potential in assisting radiologists in efficiently processing and

fully utilizing the information present in CT images.

Segmentation of the region of interest is an initial step for analyzing CT
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images. While manual segmentation is possible, it is prohibitively time-consuming,

tedious, and subject to intra- and inter-observer variations. Automated segmentation

is critical to foster efficient workflows in clinical and research settings. There has been

extensive efforts in developing automated segmentation algorithms for lung, fissures,

and lobes in thoracic CT scans. The majority of these methods are rule-based systems

which consist of a pipeline of steps targeting a specific anatomy. These methods are

generally evaluated on small datasets of 10-30 scans from one study and may not

be robust to the variations seen in large datasets, e.g. multi-institutional clinical

trials. Different scanners, image reconstruction kernels, and imaging dose can greatly

effect the appearance of pulmonary CT images. Designing rule-based systems that

are robust to all these factors has been a major challenge.

Recently, in the computer vision field there has been a paradigm shift from

designing rule-based algorithms to allowing computers to learn from data without

being explicitly programmed. Deep learning using convolutional neural networks

(ConvNets) have been successful at solving tasks in computer vision including image

classification, object detection, and segmentation. The majority of the development

and application of these tools has been on natural 2D images. A major barrier to

applying these techniques to medical images is the size of 3D datasets and ability

to train on full images given limitations in GPU memory. The majority of ConvNet

methods for medical imaging applications train on 2D slices or local 3D patches.

Such methods sacrifice global context and spatial smoothness in 3D. Furthermore,

patch-based approaches are not as efficient since the model needs to be evaluated for
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all patches in the image. The hierarchical design of ConvNets give them the ability to

learn multi-scale features with different levels of abstraction. This is a distinguishing

feature which makes ConvNets so powerful compared to feature engineering and

rule-based methods. However, training ConvNets using 2D slices or 3D patches

greatly limits the global context that can be learned.

For segmentation of the pulmonary anatomy local appearance is necessary

for precision, however, it is not sufficient for discriminating various structures and

textural patterns. Local appearance of injured lung can be indistinguishable from

surrounding soft tissue without the anatomical cues from the ribcage. Many image

features can locally resemble the characteristic plate-like appearance of fissures. However,

when viewing the entire lung the fissure can be readily identified using prior knowledge

of the fissure orientation and proximity to blood vessels. Global context from the

entire image is critical for learning anatomical variations in shape and relative location

of the anatomy.

The overarching theme of this work is to design ConvNet models which enable

learning of global and local features for segmentation in large medical images. The

motivation of this work is to allow for high-throughput regional image

analysis of lungs in thoracic CT scans. This is accomplished through

development and extensive evaluation of a pipeline consisting of a series

of multi-scale ConvNets for pulmonary segmentation in CT images. The

following specific aims were achieved in this doctoral thesis:

1. Segmentation of lungs across multiple species and pulmonary diseases.
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2. Segmentation of pulmonary fissures in COPD and lung cancer subjects.

3. Segmentation of pulmonary lobes in COPD and lung cancer subjects.

1.2 Thesis Organization

This dissertation is presented in manuscript style, therefore each chapter can

be read independently. As a result, there is some repetition between chapters for

completeness. The contributions of this dissertation are presented in Chapters 4, 5, 6,and 7

and Appendices A and B of the Appendix. Chapters 4- 7 are works which fall

under the multi-scale ConvNet theme of this dissertation. Appendices A and B are

preliminary works that fall under the rule-based segmentation category. Below is a

brief summary of remaining chapters is provided.

Chapters 2 and 3 present background information relevant to this dissertation

work. Chapter 2 presents background information on physiology of the respiratory

system, CT imaging of the lungs, and clinical trials which use imaging to study

pulmonary diseases. Chapter 3 presents a brief overview of deep learning models

including artificial neural network (ANNs) and convolutional neural networks (ConvNets).

Chapter 4 introduces a novel multi-resolution ConvNet for 3D image segmentation.

The model was designed to enable ConvNet models to first learn global features

and then learn local features in large medical images. The model was applied to

segmentation of pathological lungs in human datasets. Extensive evaluation of the

method was performed on a diverse dataset of 899 CT images of subjects with

COPD, IPF, and lung cancer. The method achieved high performance and repeatable

quantitative computed tomography (qCT) measurements when compared to manual
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segmentations.

Chapter 5 extends the multi-resolution ConvNet model presented in Chapter 4

to segment lungs in three animal species with severe lung injury. Transfer learning was

utilized to exploit features learned from the human trained model. The multi-resolution

ConvNet showed superior performance compared to single resolution models. The

proposed method was evaluated on four datasets consisting of three animal species

using a five fold cross-validation.

Prepared for submission to Medical Image Analysis. Modified from: SE Gerard,

J Herrmann, DW Kaczka, JM Reinhardt: Transfer Learning for Segmentation of

Injured Lungs Using Coarse-to-Fine Convolutional Neural Networks. Image Analysis

for Moving Organ, Breast, and Thoracic Images, 2018. [47]

Chapter 6 presents a novel ConvNet-based model for fissure segmentation.

The model initially learns a fissure region of interest (ROI) and subsequently refines

the precise fissure location within the ROI. This model is designed to alleviate the

class-imbalance between fissure voxels and non-fissure voxels. The proposed method

was extensively evaluated on 7412 images from COPDGene and 20 images from 4DCT

scans of lung cancer subjects.

Published in: SE Gerard, TJ Patton, GE Christensen, JE Bayouth, JM Reinhardt:

FissureNet: A Deep Learning Approach for Pulmonary Fissure Detection in CT

images. IEEE Trans Med Imaging, 2018. [49]

Chapter 7 presents a multi-resolution ConvNet model for lobe segmentation.

The model has the same design as the multi-resolution model proposed in Chapter
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5. To allow for aggressive downsampling without loss of the fissure signal, the fissure

prediction from the model proposed in Chapter 7 serves as an input to the lobe

segmentation model. The proposed method was evaluated on 1152 images from the

COPDGene dataset.

Submitted as: SE Gerard and JM Reinhardt: Pulmonary Lobe Segmentation Using

a Sequence of Convolutional Neural Networks for Marginal Learning. International

Symposium on Biomedical Imaging (ISBI), 2019.

Chapter 8 presents an overall discussion and conclusion to this dissertation

work.

Appendix A presents a 4D lung segmentation algorithm. The method initially

performs a rough registration to align all phases of a 4DCT scan. A 4D optimal

surface finding graph search is used which incorporates temporal constraints.

Published in: SG Yeary, GE Christensen, JE Bayouth, S Bodduluri, Y Pan, J

Guo, K Du, JH Song, B Zhao, I Oguz, JM Reinhardt: 4D Lung CT Segmentation

for Radiation Therapy Applications. ICART: Imaging and Computer Assistance in

Radiation Therapy, 2015. [159]

Appendix B presents a segmentation algorithm for inclusion of large tumors.

The proposed method starts with an intensity-based segmentation algorithm which

identifies normal lung tissue. Alpha shapes are applied to the intensity-based segmentation

to include large tumors.

Published in: SE Gerard, HJ Johnson, JE Bayouth, GE Christensen, K Du, J Guo,

JM Reinhardt: Alpha shapes for lung segmentation in the presence of Large Tumors.
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6th International Workshop on Pulmonary Image Analysis, 2016. [48]
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CHAPTER 2

BACKGROUND

2.1 Respiratory System

The function of the respiratory system is to facilitate the transfer of oxygen

and carbon dioxide between an organism and the environment. The respiratory

system consists of lungs, airways, pulmonary vasculature, and respiratory muscles

(Figure 2.1). The lungs are located in the chest cavity and are surrounded by the rib

cage for protection. Humans have a left and a right lung which are enclosed in a double

layer membrane called the pleural sac. Invagination of the inner membrane forms the

pulmonary fissures which anatomically separate the lungs into five lobes. The left lung

has two lobes, the lower and upper lobe which are separated by the oblique fissure.

The right lung has three lobes, the lower and middle lobe are separated by the oblique

fissure and the middle and upper lobe are separated by the horizontal fissure. The

accessory fissures further separate the lobes into bronchopulmonary segments. Each

lobe is supplied by separate vasculature and airway trees.

The pulmonary airways form a tree like structure consisting of approximately

twenty-three generations of branching in humans. The trachea is the primary conduit

that transfers air between the environment and the lungs. The trachea splits into a left

and right main bronchi which enter the left and right lung, respectively. Within the

lungs the main bronchi subdivide into lobar bronchi, segmental bronchi, bronchioles,

terminal bronchioles, respiratory bronchioles, and finally terminate with alveolar sacs

containing tiny hollow structures called alveoli. The alveolus is the functional unit
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Figure 2.1. Anatomy of the human respiratory system. Image taken from [147].

of the lung where gas exchange occurs. The capillaries are a network of small blood

vessels that surround the alveoli, through diffusion oxygen is transferred from the

alveoli to the capillary blood and carbon dioxide is transferred from the blood to the

alveoli.

The lungs have their own vascular system which allows blood to flow from the

heart, to the lungs, and back to the heart, a process called pulmonary circulation.

Deoxygenated blood leaves the heart through the pulmonary artery and travels to the

lungs. Within the lungs the blood travels through arteries, arterioles, and capillaries

where it becomes oxygenated. The oxygenated blood travels through venules, veins,

and finally back to the heart via the pulmonary vein. The heart supplies the oxygen

rich blood to the rest of the body, a process called systemic circulation.
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2.2 Computed Tomography

Computed tomography (CT) imaging is used to create high-resolution and

high-contrast volumetric images of the pulmonary anatomy. This enables the visualization

of the intricate lung structures, such as vasculature and airways, as well as the

heterogeneous textures of the lung parenchyma. A CT image is produced by measuring

the attenuation of X-rays at different angles around a body. Each angle produces a

projection of the anatomy, which can be used to reconstruct a 3D image. A CT image

has intensity values of Hounsfield Units (HU). HU is calculated by applying a linear

transformation to the measured linear attenuation coefficient, such that distilled water

is 0 HU and air is -1000 HU. High-density tissues attenuate the X-rays more than

low-density tissues; tissues with high attenuation appear bright, such as bone and

blood, and tissues with low attenuation appear dark, such as air. Figure 2.2 displays

the three standard anatomical cross-sections of a CT image: axial, coronal, sagittal.

Thoracic CT scans are commonly acquired while the subject is performing

a breath-hold maneuver. Standard lung volumes are commonly used such as total

lung capacity (TLC), functional residual capacity (FRC), or residual volume (RV).

If multiple scans are acquired at different lung volumes for a given subject, image

registration can be used to obtain quantitative measurements of lung dynamics [155],

lung mechanics [3], and regional lung ventilation [31]. Parametric response mapping

(PRM) also utilizes image registration and is used to characterize different phenotypes

of COPD by measuring the extent of functional small airways disease (fSAD) and

emphysema [43].
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The use of four-dimensional CT (4DCT) has increased greatly since the early

2000s [34] as it is capable of imaging the lungs over the respiratory cycle providing

spatial-temporal information. Keall et al. [66] define 4DCT imaging as “The acquisition

of a sequence of CT image sets over consecutive segments of a breathing cycle”.

The use of 4DCT during radiotherapy planning allows consideration of temporal

changes of the anatomy caused by intrafraction motion, or anatomical motion during

a treatment session due to breathing, and thus greater precision of treatment. A

4DCT scan is acquired while the subject is breathing and the respiratory trace

is simultaneously being recorded. A schematic of an idealized respiratory trace is

illustrated in Figure 2.3. A strain gauge belt or a reflective cube on the chest wall are

used as an external surrogate for respiratory volume. Retrospectively-gated 4DCT

sorts the image data into different “phase” or “amplitude” bins post-acquisition using

the external respiratory signal. Amplitude-based sorting has been shown to produce

less artifacts for nonperiodic motion [154].

2.3 Respiratory Pathologies

Respiratory pathologies are the number three leading cause of death in the

United States [40]. Subjects afflicted with pulmonary disease have difficulty breathing

normally. There are many types of diseases which affect the lungs, including obstructive

diseases like chronic obstructive pulmonary disorder (COPD) which lead to difficulties

in expelling air in the lungs; and restrictive diseases like interstitial lung disease (ILD)

which leads to stiffening of the lung tissue. Figure 2.4 depicts the appearance of

different lung diseases in cross-sectional views of CT images. The motivation of this
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(a) Axial (b) Coronal (c) Sagittal

Figure 2.2. Standard cross-sectional views of a volumetric thoracic CT scan. CT
images are oriented with the left lung on the right side of the images in axial and
coronal cross-sections.

Figure 2.3. Schematic of idealized external respiratory signal with amplitude-sorted
bins of 4DCT image.



www.manaraa.com

13

work is to enable high-throughput regional analysis on large-scale pulmonary CT

datasets with pathologies. This work includes five large-scale datasets: lung cancer

clinical trial (NIH CA166703) [101], COPDGene clinical trial [115], SPIROMICS [23,

129, 22], PANTHER-IPF [93, 94], and acute respiratory distress syndrome study with

multiple animal species study.

(a) COPD (b) IPF (c) Lung Cancer (d) ARDS

Figure 2.4. Axial slices of CT scans of various pulmonary diseases and injuries.

2.3.1 Lung Cancer

Lung cancer is the leading cause of cancer related deaths world wide, accounting

for 1.59 million deaths annually. In the United States it is estimated that in 2016

alone there will be nearly 225,000 new cases and 158,000 deaths due to lung and

bronchus cancer [1]. The five-year survival rate is 54 percent if detected at an early

stage but only 4 percent for advanced stages. Unfortunately, only 15 percent of lung

cancer cases are detected at an early stage. Early detection and treatment can greatly

increase the chances of survival. Much effort has been put into lung cancer screenings

using computed tomography (CT) imaging for high risk individuals such smokers.
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Screening with low-dose CT scans has shown to increase the chance of survival for

heavy smokers [2]. CT imaging is used in all stages of lung cancer screening, detection,

diagnosis, and treatment. With the increasing resolution and quantity of CT images

there is a high demand for computer-based analysis systems to automatically extract

quantitative measurements from the large datasets.

The lung cancer dataset used in this study is from a clinical trial (NIH CA166703)

which is using functional avoidance radiation therapy for lung cancer treatment.

Radiation therapy is used on approximately 85 percent of lung cancer patients to

help manage lung cancer. Radiotherapy uses high energy X-rays to kill cancer

cells, however, the X-rays also damage healthy cells. The effectiveness of radiation

therapy has been shown to be superior when high doses are administered. However,

current protocols limit the amount of dose to sub-therapeutic levels to avoid lung

toxicity. Currently, lung toxicity is evaluated based on the dose-volume relationship

of the lung tissue being treated. This simple metric ignores the complex interplay

of the spatial and temporal heterogeneity of lung function and anatomy and its

response to dose. The novelty of this clinical trial is that high functioning regions are

avoided in the dose plan. Functional information is obtained from performing image

registration on the different volumes of a 4DCT image. Image registration produces

a dense transformation that matches corresponding points between two images. The

determinant of the Jacobian matrix of the transformation (J) represents the local

volumetric expansion or contraction. The determinant of the Jacobian is used as a

surrogate for lung ventilation. While this method ignores the perfusion component
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of lung function, these metrics are readily obtainable as a 4DCT scan is necessary

for conventional treatment. Therefore, there is no additional imaging or cost to the

patient. Figure 2.5 shows a Jacobian image, which can be used as a surrogate for lung

function [116, 29], with the conventional RT dose plan and the functional avoidance

dose plan. The high functioning region in the anterior right lung receives high dose

in the conventional plan, however, this region is avoided in the avoidance plan.

(a) Jacobian (b) Conventional (c) Functional Avoidance

Figure 2.5. Jacobian and radiation therapy treatment plans.

In total, 120 subjects will be enrolled in the clinical trial with 60 randomized to

the control arm (conventional RT) and 60 subjects randomized to the experimental

arm (function avoidance RT). For each subject, two 4DCT scans are acquired at

baseline prior to RT, which are used to develop the treatment plan. The two scans

are acquired in order to evaluate repeatability of measurements; with the assumption

that the anatomy and function should not change between the two scans. Duplicate
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scans are acquired post-treatment at 3 month, 6 months and 9 months. Therefore,

each subject has eight 4DCT scans. Each 4DCT scan consists of ten 3D images. This

produces a huge amount of data which needs to be analyzed: 9600 3D high-resolution

images.

2.3.2 Chronic Obstructive Pulmonary Disease

In 2008, COPD was the third leading cause of death in the United States [40].

The main cause of COPD is smoking, however, smoking is neither necessary nor

sufficient to develop COPD [8, 106, 63]. COPD is a combination of emphysema

and chronic bronchitis [89]. Emphysema results from the destruction of the alveoli

and chronic bronchitis occurs when the lining of the bronchial tubes become inflamed.

Radiographically, emphysema is characterized by large airspaces resulting from parenchymal

tissue destruction, and chronic bronchitis is characterized by airway wall thickening

and enlarged blood vessels. The extent and spatial patterns of emphysema and air

trapping can be measured from CT images.

COPDGene is a large multi-center clinical trial with over 10,000 subjects

enrolled [115]. CT images were acquired across 21 imaging centers using a variety of

scanner makes and models. Each subject had two breath-hold 3D CT scans acquired,

one at TLC and one at FRC. A subset of of subjects had an additional RV scan.

SPIROMICS is a large multi-center clinical trial studying subpopulations and

intermediate outcomes of COPD subjects [23, 129, 22]. CT images of subjects in this

study were acquired at TLC and RV.
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2.3.3 Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to

scarring of the lung tissue. Subjects with IPF have difficulty taking deep breaths and

cannot get enough oxygen to the lungs. IPF is a form of ILD, i.e., it is a disease that

affects the interstitium.

The IPF dataset was obtained from an ancillary study of PANTHER-IPF [93,

94]. The ancillary study study image derived IPF textural patterns in CT images

and their relations to disease progression [122].

2.3.4 Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure

that leads to inflammation and fluid accumulation in the lungs [41]. Radiographically

this condition presents with diffuse bilateral consolidation in the dependent lung

region as shown in Figure 2.4(d). ARDS subjects require mechanical ventilation for

survival until recovery. CT imaging can be used for diagnosis of ARDS and to perform

quantitative analysis of spatial aeration during mechanical ventilation.

A multi-species dataset consisting of animal models of ARDS was used in this

work. The dataset consists of canine, porcine, and ovine with lung injury mimicking

ARDS. The porcine subjects have both 3DCT scans at constant pressures and 4DCT

phase-gated scans acquired during different mechanical ventilation protocols.
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CHAPTER 3

DEEP LEARNING AND NEURAL NETWORKS

Machine learning is a form of data analytics which enables computers to

learn from data rather than being explicitly programmed. Machine learning can

be divided into supervised learning and unsupervised learning; supervised learning

uses labeled training data and aims to find the mapping between inputs and label,

whereas unsupervised learning aims to find patterns and clusters in unlabeled data.

Traditional machine learning uses explicitly defined features extracted from

raw data. These features are manually engineered based on domain knowledge of the

problem at hand and are typically limited to low-level features. Many research efforts

have worked on the design of informative features in images. Examples of such image

features include scale-invariant feature transform (SIFT) [84], histogram of oriented

gradients (HOG) [26], Gabor filters [87], and local binary patterns (LBP) [98].

Deep learning is a subgroup of machine learning algorithms which combines

the feature extraction and the output prediction in one integrated system. This

eliminates the need to design features and instead enables automated learning of

features which are most useful mapping inputs to outputs. This key difference between

traditional machine learning and deep learning is illustrated in Figure 3.1. Neural

networks are the primary model used for deep learning frameworks, which have a

hierarchical design allowing for features with different levels of abstraction to be

learned. This chapter will introduce artificial neural networks (ANNs), convolutional
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neural networks (ConvNets), popular ConvNet architectures, and the process of

“training” neural networks.

Figure 3.1. Comparison of traditional machine learning and deep learning.

3.1 Artificial Neural Network

A multilayer perceptron (MLP) or artificial neural network (ANN) is a computation

model that was inspired by the biological neural networks in animal brains. The

fundamental unit of an ANN is a neuron. Each neuron has a set of inputs and

the neuron computes a weighted sum of its inputs and applies a nonlinear function

to produce an output. Multiple neurons are organized into layers and layers are

stacked hierarchically, i.e., the output of layer i is the input to layer i + 1. Each

layer can be represented as a vector and the weights connecting layers i and i+ 1 can
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be represented as a matrix where each element represents the connection strength

between each neuron in a layer i to each neuron in layer i + 1. The output of the

layer can efficiently be computed as a matrix-vector multiplication between the weight

matrix and the vector input producing a vector output. A schematic of an ANN with

four input units, two hidden layers with five neurons each, and an output layer with

two units is illustrated in 3.2. The functional form of this neural network is

f(x,W ) = W2(σ(W1(σ(W0x)))), (3.1)

where x is the input vector, σ(·) is a nonlinear function, and W is the set of weights

consisting of W0, W1,and W2, which are weight matrices for the first, second, and

third layers, respectively. The number of hidden layers and number of neurons in

each hidden layer are hyperparameters which are experimentally determined; more

hidden layers and hidden neurons results in more free parameters used to fit the

model.

3.2 Convolutional Neural Networks

Convolutional neural networks (ConvNets or CNNs) are a specialized neural

network designed for learning patterns in spatially correlated data, such as images

and videos. The input to a ConvNet has is multidimensional tensor with elements

that are spatially correlated. These spatial relationships are preserved throughout

the ConvNet. A ConvNet consists of a hierarchy of layers. Each layer i takes an

input image representation Ii and transforms it to an output image representation

Ii+1. The output of a layer serves as the input to the next layer in the hierarchy.

Ii and Ii+1 are both 4-dimensional (4D) tensors, with three spatial dimensions and
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Figure 3.2. Multi-layer perceptron with two hidden layers each with five neurons.

one channel dimension. The channel dimension represents different feature types and

is analogous to the red, green, and blue channels in a RGB image. The sizes of Ii

and Ii+1 are Xi × Yi × Zi × Ci and Xi+1 × Yi+1 × Zi+1 × Ci+1, respectively, where

X, Y, Z are the spatial dimensions and C is the channel dimension. There are different

layer types which perform various transformations, the most common layer types are:

convolutional, nonlinearity, pooling, and transposed convolution. Each layer type has

a set of learned parameters and a set of hyperparameters. The learned parameters

will be optimized during training. The hyperparameters are fixed parameters that do

not change.

A convolutional layer performs image convolution with a kernel and the input

image. The kernels are also 4D tensors, with local spatial extent and a channel extent
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which equals the input channel size. The kernel can be thought of as a feature detector

and the convolution of the kernel with the image produces a spatial activation map of

that feature. This is repeated with N kernels, each producing a 3D tensor. The 3D

tensors are concatenated along the channel dimension to produce the output 4D tensor

with C = N channels. If zero-padding and convolution with a stride of one are used,

a convolutional layer preserves the spatial size of the input, i.e., Xi+1 = Xi, Yi+1 =

Yi, and Zi+1 = Zi. The learned parameters are the kernels, therefore the features

detectors are being learned rather than designed. The convolution operation gives

the local connectivity and weight sharing properties to ConvNets, which distinguishes

them from MLPs. The hyperparameters in a convolutional layer are the number of

kernels Ni, the spatial extent of each kernel, and the stride of the kernel.

Pooling layers are used to reduce the spatial size of an image representation.

The channel dimension size is preserved through a pooling layer, i.e., Ci+1 = Ci.

Pooling layers have no learned parameters. The hyperparameters in a pooling layer

are the kernel size, the stride, and the pooling function. It is common to have a

kernel size of 2 × 2 × 2 and stride of 2 × 2 × 2, which results in downsampling by a

factor of two along each spatial dimension, i.e., Xi+1 = Xi

2
, Yi+1 = Yi

2
, and Zi+1 = Zi

2
.

Max-pooling and mean-pooling are common pooling functions.

Nonlinearity layers are used after each convolutional layer and perform an

elementwise nonlinear function to an image representation. Nonlinearity layers do

not change the size of the image representation. There are no learned parameters in

a nonlinearity layer, and the only hyperparameter is the function type. The most
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common nonlinearity functions, sigmoid, hyperbolic tangent (TanH), and rectified

linear units (ReLu), are displayed in Figure 3.3.

Figure 3.3. Common nonlinearity functions utilized in neural networks.

Transposed convolutional layers are used to achieve learnable upsampling.

Segmentation networks produce an output image with the same size as the input

image, so if pooling is used the image representation needs to be upsampled to

the original size. Conventional upsampling uses interpolation with nearest neighbor,

linear, bi-linear, or bi-cubic functions. Instead of defining the interpolation function,

transposed convolution learns the interpolation through a reverse convolution operation.

The learned parameters and hyperparameters in a transposed convolutional layer are

the same as a convolutional layer.

In addition to the core layers discussed above, in recent years batch normalization [62]

and dropout [134] have been highly successful and widely used. Batch normalization

is used to make the training process more stable and prevent “zero gradients”.

Zero gradients refer to the partial derivatives of the loss function with respect to
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the weights. When these gradients are close to zero the parameters do not get

updated and learning cannot proceed. Batch normalization is commonly used after

convolutional layers to normalized the output of the layer. Dropout layers are used to

prevent overfitting on the training data. A predefined percentage of output neurons

are randomly “dropped out”, i.e., assigned a value of zero, during the training process.

This is a similar idea to training an ensemble of models. Each pass through the

network a new model is being trained.

3.3 Architectures

There are different architectures designed for classification, regression, and

segmentation tasks. Classification architectures predict the probability that a input

image belongs to each of |Y | classes, therefore the number of neurons in the last layer

is |Y |. To transform a multi-dimensional tensor to a vector with |Y | neurons, these

networks use fully-connected layers which are equivalent to a layer in an ANN. The

first ConvNet architecture, LeNet [77], is illustrated in Figure 3.4, and is designed

for classification tasks. Regression architectures predict a continuous value rather

than a discrete class label. A regression architecture is the same as a classification

architecture, however, there is just one output unit. Segmentation architectures

predict the probability that each voxel belongs to each of |Y | classes, therefore the

number of neurons in the last layer is the input image size times |Y |. A popular

segmentation architecture, U-net [119], is illustrated in Figure 3.5. The main difference

between classification and regression architectures compared to segmentation architectures

is segmentation architectures use learnable upsampling layers to recover the spatial
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resolution lost from pooling layers. Furthermore, segmentation architectures do not

use fully-connected layers.

Figure 3.4. LeNet architecture from [77]

3.4 Supervised Training

Supervised training of a neural network requires training data which have

inputs and corresponding target output labels. Training is the process of optimizing

the weights of a neural network to find the mapping from inputs to outputs. A loss

function is defined that represents the dissimilarity between the predicted output

of the network and the desired output. The model is optimized to minimize the

dissimilarity. This is essentially fitting a model to the training data points; a model

which has millions of parameters. Training the network is a four step process:

forward-pass, loss function evaluation, backward-pass, and weight update. The forward-pass

propagates the input data through the layers of the network. The loss function

compares the output of the network with the input data label. The backward-pass,

or backpropagation, calculates the partial derivative of the loss function with respect
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Figure 3.5. U-Net architecture from [119].

to each weight in the network. Backpropagation is a recursive application of the chain

rule that allows for straightforward calculation of the analytical gradient of a complex

function with millions of parameters. Finally, the weights are updated using gradient

descent optimization, or some variant thereof.

3.5 Challenges

Deep learning using ConvNet models have been largely successful in computer

vision. However, these techniques have been developed for applications in natural

images. Many works are developed and evaluated on the publicly available ImageNet

dataset. ImageNet is a large-scale dataset for evaluating object detection and image

classification algorithms. The dataset consists of over 14 million RGB images with
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annotated labels belonging to more than 20 thousand classes.

Theoretically, ConvNets seamlessly extend from 2D networks to 3D networks

for handling medical images. However, there are challenges that need to be addressed

to allow practical usage of ConvNets in medical imaging. First, training ConvNets is

performed on a graphics processing unit (GPU) card which have thousands of cores.

This greatly increases the throughput of performing the matrix operations required

for training neural networks. However, current GPU cards have a limited amount

of memory; the memory demand for high-resolution volumetric images and deep

ConvNets exceed the available GPU memory. Second, annotated medical images are

not as readily available as natural images. Annotation of medical image requires

expert analysts, therefore high-throughput techniques such as crowdsourcing the

annotations are not available. Third, in medical datasets there is often a class-imbalance

when dealing with rare diseases making it a challenge to learn patterns in the underrepresented

class. Class-imbalance also often occurs for segmenting small structures in large

images. In the remaining chapters we address these challenges to enable usage of

deep learning with ConvNet models towards segmentation of pulmonary structures

in CT images.
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CHAPTER 4

LUNG SEGMENTATION IN HUMANS

Lung segmentation is a necessary pre-processing step in quantitative computed

tomography (qCT) analysis. Developing segmentation algorithms to robustly handle

different lung pathologies has been a challenging endeavor that has been studied for

several decades due to its necessity in clinical and research settings. Deep learning

frameworks using convolutional neural networks (ConvNets) have shown exceptional

performance at performing tasks in computer vision including image classification

and segmentation. In this work, a deep learning approach is used with a novel

multi-scale ConvNet model for learning segmentation in large volumetric images. The

proposed method was extensively evaluated on a diverse dataset consisting of 899 CT

images of subjects with chronic obstructive pulmonary disorder (COPD), idiopathic

pulmonary fibrosis (IPF), and lung cancer. The dataset consisted of images acquired

at multiple lung volumes including total lung capacity (TLC), functional residual

volume (FRC), residual volume (RV), and intermediate phases in 4DCT images.

Overall, the proposed method achieved an average symmetric surface distance of 0.234

mm and a median Jacaard index of 0.984 when compared to manual segmentations.

4.1 Introduction

Computed tomography (CT) produces 3-dimensional (3D) reconstructions of

the anatomy by measuring the attenuation of x-rays through a body at multiple

angles. CT is the modality of choice for imaging the intricate structures of the lungs.
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CT imaging produces high-contrast and high-resolution images which are necessary

for characterization of anatomical alterations in lung parenchyma, vasculature, and

airways. Technological advancements in CT scanners have enabled the acquisition

of images with sub-millimeter slice thickness in less than a second. This produces

large datasets with more than 500 slices that need to be reviewed. Automated image

analysis pipelines are critical for extracting and understanding the information in

these large datasets.

An initial step for automated pulmonary analysis is to generate a lung segmentation

that distinguishes pulmonary tissue from non-pulmonary tissue. It is important

that the lung segmentation includes both healthy and pathological regions so these

regions are not excluded from quantitative analysis. Quantitative CT (qCT) can be

used to characterize spatial patterns of lung aeration and extent of diseases such

as emphysema [86] and asthma [95]. Parametric response mapping (PRM) uses

image registration between inspiration and expiration images to quantify amount

of emphysema and airways disease [43]. These methods rely on an accurate lung

segmentation to produce reliable measurements. Image registration requires a lung

segmentation to limit define where the cost function should be evaluated. Furthermore,

varifold-based registration algorithms align surface representations which require a

segmentation to produce [100].

The low-density lung tissue is easily separated from the surrounding dense

soft tissue using simple threshold-based techniques [60, 54, 113, 6, 76]. The threshold

can automatically be determined for each image with optimal thresholding [60]. The
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trachea and main bronchi are removed from the threshold result using region growing

with automatic seed detection. Morphological operations are subsequently utilized to

fill any holes in the segmentation result.

Intensity-based lung segmentation algorithms are highly successful and widely

used in both clinical and research settings as these methods are computationally

efficient and easy to implement. However, these simplistic methods can be fragile and

not well suited for highly diseased lungs. Intensity-based algorithms fail to include

high-density pathologies, such as tumors and fibrosis. Peripheral pathologies are

especially challenging since there can be little or no contrast between the pathology

and the non-pulmonary tissue. Air in the stomach or intestines can erroneously

be included in intensity-based methods; this is especially problematic when there is

blurring near the diaphragm causing the air to appear connected to the lungs. Metal

artifacts resulting from pacemakers can result in both over- and under-segmentation

in the affected region.

To account for the short-comings of intensity-based methods, several model-based

methods have been developed to target pathological lung segmentation. Atlas-based

segmentation methods use image registration to map a known segmentation to the

image to be segmented [144, 130, 78, 162]. A collection of atlases were used in [130] to

form a probabilistic atlas to model the many variations in lung shape and appearance.

Uncertain voxels in the probabilistic atlas are classified by a kNN classifier. A

disadvantage of atlas-based methods is the image registration is time consuming and

a difficult problem in itself. In [144] an automated lung segmentation error detection
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algorithm was developed to detect failed segmentations by an intensity-based method.

If an error is detected an advanced atlas-based segmentation was used.

Statistical shape models (SSMs) and active appearance models (AAMs) are

another model-based segmentation method [19]. SSMs estimate shape variations from

a training dataset and subsequently fit the model to test cases using local appearance

information. A robust SSM was developed to segment pathological lungs in CT

images [136]. In [153], a 4D SSM was developed to segment lungs in 4DCT images.

While SSMs have been successful across a wide range of applications, they are sensitive

to model initialization and can fail in cases with weak edges. A review of SSMs used

in medical imaging analysis is given in [57].

Anatomical information is valuable for segmenting the lungs, especially in

presence of dense pathologies. Curvature of the ribcage closely follows the curvature of

the lung boundary, this information has been exploited for diseased lung segmentation [109,

88]. An anatomical model consisting of the chest wall, mediastinum, and large airways

was developed to guide lung segmentation in [12]. In [131], anatomical landmarks are

automatically detected at the carina, ribs and spine for initialization of a SSM.

Recently, the success of deep learning in medical imaging applications there

has been a paradigm shift from using rule-based image analysis pipelines to learning

directly from raw image data. Several works have proposed convolutional neural

networks for lung segmentation in CT images [56, 5]. A limitation of these methods

is the ConvNets are trained using 2D slices and not the full anatomy. Segmentation

in 3D incorporates spatial smoothness and contextual information that can help
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differentiate ambiguous regions on 2D slices.

In this work we propose a multi-scale ConvNet model for 3D segmentation of

lungs in CT images. The multi-scale model consists of a series of ConvNets which

are trained with images of increasing resolution. The motivation of this design was

to allow ConvNets to learn both global contextual features and local high-resolution

features in large volumetric medical images. The model was extensively evaluated

on 899 CT images of subjects with chronic obstructive pulmonary disorder (COPD),

idiopathic pulmonary fibrosis (IPF), and lung cancer.

4.2 Datasets and Reference Standards

4.2.1 COPDGene

The first dataset was obtained from the COPDGene clinical trial - a large

multi-center trial studying genetics and imaging phenotypes in COPD subjects [115].

All subjects used in this study had scans acquired at total lung capacity (TLC) and

functional residual volume (FRC) and a subset of subjects had scans acquired at

residual volume (RV). The dataset consisted of 2888 CT images from 1945 subjects.

4.2.2 SPIROMICS

The second dataset was obtained from the SPIROMICS clinical trial - a

multi-center trial studying subpopulations and intermediate outcomes of COPD subjects [23,

129, 22]. The dataset used in this work consisted of 225 CT images from 60 subjects

acquired at TLC and RV, see [129] for full imaging protocol.
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4.2.3 PANTHER-IPF

The IPF dataset was obtained from an ancillary study of PANTHER-IPF [93,

94]. The ancillary study study image derived IPF textural patterns in CT images and

their relations to disease progression [122]. The dataset used in this work consisted

of 305 images from 190 subjects. All datasets were acquired at TLC, see [122] for

complete imaging protocol.

4.2.4 Lung Cancer

The lung cancer dataset was acquired in coordination with a large clinical trial

studying functional avoidance radiation therapy (NIH CA166703) [101]. Each subject

has two 4DCT scans prior to treatment and two scans at 3 months, 6 months and

9 months post-treatment. 4DCT were reconstructed using retrospective amplitude

based sorting. Voice guidance was used to improve breathing repeatability. A subset

of data with manual segmentations was used in this work consisting of 1620 3D images

(162 4DCT images with 10 phases each) from 40 unique subjects.

4.2.5 Manual Segmentations

All manual lung segmentations were generated semi-automatically. Automated

segmentations were initially generated using Pulmonary Analysis Software Suite (PASS,

University of Iowa Advanced Pulmonary Physiomic Imaging Laboratory [55]). The

automatically generated segmentations were edited by a human analyst when necessary.
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4.3 Methods

4.3.1 Overview

A multi-scale ConvNet model is proposed for learning features with multiple

scale ranges. The model consists of a series of two Seg3DNet architectures that are

trained sequentially. Training and evaluation datasets consisted of human subjects

with COPD, IPF, and lung cancer.

4.3.2 Seg3DNet

Figure 4.1. Seg3DNet architecture. The number of channels for each image
representation is denoted in the lower left corner of each cube. For the encoder
module, we define Ni = 2i+5 so that the number of activation maps increases by a
factor of two at each level. The number of kernels used in each convolutional layer
can be inferred by the number of activation maps in the layer’s output representation,
i.e., the first convolutional layer has N0 = 20+5 = 32 kernels. The relative spatial size
of the activation maps are drawn to scale. At each level the spatial dimensions of the
feature representation gets downsampled by a factor of two.
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Seg3DNet is a fully-convolutional network for volumetric image segmentation

with encoder and decoder modules, see Figure 4.1. The encoder network consists

of L resolution levels; each resolution level has two convolutional layers followed

by a max-pooling layers. Max-pooling is used to achieve a spatial downsampling

with a factor of two between resolution levels. The decoder network produces a

single-channel representation for each level using convolutional layers with a single

kernel. The final representations from each resolution level are integrated by concatenating

the representations followed by two convolutional layers. The output of Seg3DNet is

a probability map corresponding to the probability that each voxel is in the lung.

4.3.3 Multi-Resolution Model

Figure 4.2. Multi-resolution model. The upper pipeline corresponds to the
low-resolution model and the lower pipeline corresponds to the high-resolution model.
The dashed line connection links the two models, allowing the global information
learned in the low-resolution model to be used in the high-resolution model.
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The multi-resolution model is composed of a series of two Seg3DNet’s, see

Figure 4.2. The two networks have the same architecture and hyperparameters,

however, the first network is trained with low-resolution images and the second

network is trained with high-resolution images. This allows the two networks to

learn different ranges of features scales without having to tradeoff global context and

spatial smoothness for high-resolution.

The first Seg3DNet is trained using the entire 3DCT image giving the network

the capacity to utilize global contextual features. To accommodate the entire image,

the CT images and target segmentations are aggressively downsampled to 64×64×64

voxels. This corresponds to a downsampling factor of approximately eight in each

spatial direction.

The second network is trained on high-resolution images; all images are resampled

to have 1mm3 isotropic voxels for consistency. The input to the second network is

a two channel image consisting of the CT image and the prediction from the first

network. This allows the network to learn precise boundary information while still

integrating global information learned from the first network. At this resolution, the

network cannot train on the full images due to limitations in GPU memory. Axial

slabs of size 256× 256× 32 are extracted at various positions to cover the entire lung

field.

4.3.4 Training

The multi-resolution model is learned by first training the low-resolution network

and subsequently training the high-resolution network. Initially, only the COPD and
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IPF datasets are used for training the model. Subsequently the model is fine-tuned

using the lung cancer dataset to allow inclusion of large lung tumors. Each dataset

was split into 80% training and 20% validation.

A binary cross entropy loss function is used, the loss for each voxel x is given

by

L(x) = −(y(x) log(ŷ(x)) + (1− y(x)) log(1− ŷ(x))) (4.1)

where y(x) is the true class label for voxel x, y(x) = 1 for lung and y(x) = 0 for

background, and ŷ(x) is the predicted probability that voxel x belongs to the lung

class. The total loss is given by the average loss for all voxels. The loss function is

optimized with respect to the free parameters (the convolution kernels) using standard

backpropagation.

Adam optimization [67] is used for training with a learning rate of 5 × 10−4.

Parameters are initialized using Xavier normal initialization [50]. Training was performed

using a P40 NVIDIA GPU with 24 GB RAM. Total training time is approximately

48 hours.

4.3.5 Post-Processing

The ConvNet predicts probability image indicating the probability that each

voxel is lung, with no distinction between the left and right lungs. Post-processing

is performed to obtain a final binary segmentation and then separate the binary

segmentation into left and right lungs. First a threshold of p = 0.5 is applied to

the probability image to obtain a binary image. Next connected component analysis

is performed and all components except the two largest are removed. The volumes
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of the two largest components are compared; if the volume of the second largest

component is less than half the volume of the first largest component, the second

largest component is removed. If two components remain, these are identified as left

and right lungs and no further processing is required. If only the first component is

retained the left and right lungs are assumed to be connected and lung separation is

performed.

4.4 Experiments and Results

4.4.1 Metrics

Performance of the proposed method was evaluated using the Jacaard index

for volume overlap and average symmetric surface distance (ASSD). The Jacaard

index is defined as

J(P,M) =
|P ∩M|
|P ∪M|

, (4.2)

where | · | is the set cardinality and P ∩M and P ∪M are the intersection and union,

respectively, of the set of voxels predicted to be lung in the automated segmentation

P and the set of voxels defined as lung in the manual segmentation M . The Jacaard

index has values ranging from zero to one, with one indicating perfect agreement.

ASSD was used to measure the distance between the predicted lung boundary BP

and manually generated lung boundary BM. The distance between a voxel x and a

set of voxels on boundary B is defined as

D(x,B) = min
y∈B

d(x,y), (4.3)
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where d(x,y) is the Euclidean distance between voxels x and y. The ASSD between

BP and BM is defined as

ASSD =
1

|BP|+ |BM|
×
( ∑

x∈BP

D(x,BM) +
∑
y∈BM

D(y,BP)

)
. (4.4)

ASSD is greater or equal to zero, with zero being perfect agreement.

4.5 Results

The model was evaluated on 899 images: 576 COPDGene images, 51 SPIROMICS

images, 62 PANTHER-IPF images, and 210 lung cancer images. Segmentation

results of lung cancer subjects with large tumors are illustrated in 4.5. Each image

corresponds to a single phase of a 4DCT scan.

Quartiles of the Jacaard index and ASSD distributions for each dataset are

illustrated in Figure 4.6. The COPDGene and SPIROMICS datasets achieved higher

performance with median ASSD (Jacaard index) of 0.221 mm (0.990) and 0.222 mm

(0.987), respectively. The IPF and lung cancer datasets achieved median ASSD

(Jacaard index) of 0.383 mm (0.979) and 0.342 mm (0.978), respectively. Performance

was consistent for the three lung volumes in the COPDGene study as illustrated

in Figure 4.7. Figure 4.8 illustrates the distribution of ASSD and Jacaard index

for each subject. The tight distribution of errors within each subject demonstrate

the repeatability of segmentation performance across volumes of 4DCT and different

4DCT scans of same subjects.

Lung segmentations were used to limit the region of interest for qCT analysis.

For quality control, the mean HU calculated within the manual lung segmentation

was compared to the mean HU calculated within the predicted lung segmentation
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(a) (b) (c) (d)

Figure 4.3. Representative results for six cases from the COPDGene dataset. a)
CT image, b) predicted mask, c) manual mask, d) difference image with under- and
over-segmentation in magenta and cyan, respectively. Rows 1-2 are TLC, rows 3-4
are FRC, and rows 5-6 are RV images.
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(a) (b) (c) (d)

Figure 4.4. Representative results for six cases from the PANTHER-IPF dataset. a)
CT image, b) predicted mask, c) manual mask, d) difference image with under- and
over-segmentation in magenta and cyan, respectively.
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(a) (b) (c) (d)

Figure 4.5. Representative results for five cases from the lung cancer dataset. a)
CT image, b) predicted mask, c) manual mask, d) difference image with under- and
over-segmentation in magenta and cyan, respectively.
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Figure 4.6. Quartiles of ASSD and Jacaard index distributions for the four datasets
used in this study.

Figure 4.7. Quartiles of ASSD and Jacaard index distributions stratified by lung
volumes. Only the COPDGene dataset was included in analysis.
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Figure 4.8. Distribution of ASSD and Jacaard index for each subject in 4DCT dataset.

Figure 4.9. Bland-Altman plot comparing mean HU evaluated inside the manual
lung segmentation (µHU) and the predicted lung segmentation (µ̂HU). Dashed lines
represent limits of agreement (LOA).
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Figure 4.10. Quartiles of the mean HU and standard deviation of HU stratified by
lung volume. Predicted lung segmentation is used for calculation. Only COPDGene
dataset was included in analysis.

Figure 4.11. Quartiles of mean HU and standard deviation of HU stratified by dataset.
Predicted lung segmentation is used for calculation. Only TLC scans were included
in analysis.
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Figure 4.12. Quartiles of mean HU and standard deviation of HU by stratified lung
volumes in 4DCT scans.

using a Bland-Altman analysis, results are displayed in Figure 4.9. For the majority

of cases, the two lung segmentations produced mean HU calculations that differed by

less than 4 HU. The remaining analysis only used the predicted lung segmentation for

qCT measurements. Mean HU an standard deviation HU stratified by lung volume are

illustrated in Figure 4.10, only COPD datasets were used for this analysis. Similarly,

mean HU and standard deviation of HU across the volumes of 4DCT images are

illustrated in Figure 4.12 Results stratified by dataset are illustrated in Figure 4.11,

only scans acquired at TLC were used for this analysis to allow fair comparison to

PANTHER-IPF dataset which only had TLC scans.
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4.6 Discussion

A multi-resolution ConvNet model was proposed which consists of two ConvNets

for learning different scales of features in large volumetric images. Overall, the method

showed high performance on a diverse dataset of 899 CT images. This included images

from four large-scale clinical trials: COPDGene, SPIROMICS, PANTHER-IPF, and

a clinical trial studying functional avoidance in radiation therapy for lung cancer.

Datasets with COPD subjects (COPDGene and SPIROMICS), showed slightly higher

performance compared to the IPF and lung cancer datasets. COPD generally does

exhibit diffuse dense pathologies as seen in IPF and lung cancer subjects. This makes

COPD segmentation fairly straight forward and intensity-based methods perform

well. IPF and lung cancer or more difficult to segment, especially cases where the

pathology is in the peripheral lung. The proposed method nonetheless demonstrated

high performance for these challenging cases.

Images acquired at different lung volumes can show large variations in both

shape and appearance. The COPDGene dataset consisted of scans which were acquired

at three lung volumes: TLC, FRC, and RV. Furthermore, the intermediate phases of

4DCT scans were included in evaluation. The proposed method was able to segment

each of these phases with high accuracy. Consistent segmentation between different

lung volumes of the same subjects is important for reliable qCT analysis such as

calculating aeration at different lung volumes.

Identifying the lung boundary near the mediastinal region is notoriously difficult

and subjective. The blood vessels and airways enter the lung at the mediastinum and
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there is no clear definition on how much of these structures should be included in

the segmentation. Lung tumors at the mediastinum can further obscure the true

boundary. The proposed method was able to consistently segment this region to

match the training data. However, it was observed that the largest surface errors

were generally in this region.

The initial model trained using only COPD and IPF data failed to include

large tumors when applied to the lung cancer dataset. After fine-tuning the model

with the lung cancer dataset the model was able to include large tumors. In the

future, a single model could be trained using all data. A potential problem with this

could be the class imbalance between datasets with and without large tumors. This

may result in exclusion of tumors since there is a very low cost for miss-classification

of tumor voxels. While the lung cancer training dataset included 1410 3D images,

there are only variations from 28 unique subjects. In the future this dataset should

be expanded to account for more variations in tumor shape, size, and position.

For segmentation of 4DCT images, the multi-scale model was applied independently

to each phase volume. Analogous to how 3D segmentation is advantageous over 2D

segmentations, 4D segmentation would allow for incorporation temporal information

and may produce more temporally consistent results. This was currently not feasible

due to the limited amount of training data with all phase images included. In future

work, a recurrent neural network (RNN) will be explored for modeling the temporal

patterns in 4DCT datasets.

Many of the 4DCT scans from the lung cancer dataset have large artifacts near
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the diaphragm in one or more phases. These artifacts are produced by inconsistent

lung volumes between breaths resulting in duplication or missing anatomy. It is not

clear what the true lung segmentation should include for these cases, however, the

proposed method produced a reasonable segmentation which included the low-density

voxels with a smooth transition to high-density voxels. A 4D segmentation algorithm

would be ideal to handle these artifacts by utilizing the phase image with the least

amount of artifacts and producing temporally consistent lung shapes to match this

phase.

Aggressive downsampling is feasible for lung segmentation since it is a large

structure with high-contrast. Although the precise boundary location is compromised,

the lung field can still be easily distinguished in downsampled images. However, this

may not be appropriate for structures that have a smaller scale or lower contrast. For

example, the pulmonary fissures are approximately a voxel thin with low-contrast.

Fissures can be difficult to identify even in high-resolution images. The fissures cannot

be distinguished at all in downsampled images. Small blood vessels and airways are

also not visible. The proposed method would need to be modified to segment these

structures.

4.7 Conclusion

A multi-scale ConvNet was developed for learning segmentation in large medical

images. The proposed method was trained to segment lungs in CT images of diseased

subjects. The method achieved high performance on a diverse dataset of 899 CT

images consisting of various pathologies, lung volumes, and imaging protocols. In
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future work the method will be extended to incorporate temporal information in

4DCT datasets. The proposed method could be applied to segmentation of other

anatomical structures in medical images where global contextual information is important.
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CHAPTER 5

CROSS-SPECIES LUNG SEGMENTATION

Revision of: SE Gerard, J Herrmann, DW Kaczka, JM Reinhardt:

Transfer Learning for Segmentation of Injured Lungs Using

Coarse-to-Fine Convolutional Neural Networks. Image Analysis

for Moving Organ, Breast, and Thoracic Images, 2018.

Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a

challenging task due to the diffuse opacification in the dependent lung which results

in little or no contrast at the lung boundary. For segmentation of severely injured

lungs, a method which incorporates both local intensity and texture information

and global contextual information are important for consistent inclusion of injury.

A deep learning framework is proposed which uses uses a novel multi-resolution

convolutional neural network (ConvNet) for automated segmentation of lungs in

multiple animal species with models of ARDS. The multi-resolution model eliminates

the need to tradeoff between high-resolution and global context by using a cascade of

low-resolution to high-resolution networks. Transfer learning is used to accommodate

the limited number of ARDS training data: the model is initially pre-trained on

a human dataset and subsequently fine-tuned on an animal dataset consisting of

canine, porcine, and ovine images of subjects with injuries similar to ARDS. For

comparison the multi-resolution model is compared to two single resolution ConvNets:

a high-resolution ConvNet and a low-resolution ConvNet. The multi-resolution model

outperforms both a low-resolution and a high-resolution model. On the animal

dataset (N = 287)the multi-resolution model achieves an overall Jacaard index of
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0.963 compared to 0.919 and 0.950 for the low-resolution and high-resolution models,

respectively. The multi-resolution model achieves an overall average symmetric surface

distance of 0.438 mm compared to 0.971 mm and 0.657 mm for the low-resolution

and high-resolution modes, respectively.

5.1 Introduction

Computed tomography (CT) imaging produces high-resolution volumetric reconstructions

of the anatomy. The intensity values in a CT image reflect the density of the

tissue, producing high contrast between low-density lungs and the surrounding soft

tissue. High-resolution CT images allow for the intricate lung texture, vasculature,

and airway tree to be visualized. CT imaging is routinely utilized for diagnosing

lung pathologies, guiding treatment, monitoring progression, and characterizing lung

diseases.

Acute respiratory distress syndrome (ARDS) is a severe respiratory failure

that leads to diffuse inflammation, increased pulmonary vasculature permeability,

and loss of lung tissue aeration [21]. Radiographically, this condition presents with

diffuse bilateral opacification in the dependent lung [45]. While chest x-ray can

confirm diagnostics of ARDS, it does not capture injury localization and spatial

heterogeneity. CT has great potential for imaging ARDS as it can differentiate injury

phenotypes and correlate with patient response to mechanical ventilation [44]. CT

imaging is increasingly being used to characterize the spatial heterogeneity of injury

and regional mechanics of ARDS [65, 103, 38, 44, 102, 14]. Quantitative CT (qCT)

enables objective quantification of injury and has been used for evaluating response to
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mechanical ventilation protocols [9, 51, 104] and monitoring injury progression [16,

15]. Spatial and temporal heterogeneity of ventilation in ARDS can be measured

through registration of dynamically imaged lungs [58] or lungs imaged at multiple

inflation levels [65, 103, 15].

A precursor to qCT analysis ARDS is a lung segmentation which distinguishes

pulmonary tissue from the surrounding tissue. Intensity-based methods are widely

used for lung segmentation in CT images as there is high contrast between the

air-filled lungs and surround soft tissue. However, these methods fail to include dense

pathologies such as the non-aerated lung regions in ARDS subjects. Lungs with ARDS

are particularly challenging to segment as the injury is diffuse and predominately in

the posterior lung region. Peripheral injury is more challenging to segment compared

to interior injury because there is very little or no contrast between the injury and the

non-pulmonary tissue. Furthermore, consolidated regions have no textural features

that make it distinguishable from the surround soft tissue.

There have been several works that specifically target segmentation of subjects

with ARDS. A semiautomatic approach using segmentation-by-registration to segment

longitudinal images of rats with surfactant depletion was proposed in [158]. A

limitation of this approach is it requires a manual segmentation for the baseline

scan. Additionally, this method relies on a time-consuming image registration (4-6

hours). Similar segmentation-by-registration approaches were proposed in [108, 107].

Anatomical information from the airways and rib cage has been used to identify the

boundary between injured lung and soft tissue in injured lungs [25]. A wavelet-based
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approach was proposed in [139], however, this method may fail for severely injured

case where no edge information is present between the injury and soft tissue.

Manual segmentation is still widely used for segmentation of lungs with ARDS,

as current automated methods are not reliable. Manual segmentation is tedious, time

consuming, and subject to high intra- and inter-observer variations. Furthermore,

manual segmentations are performed on 2D slices which limits global context and

produces segmentations that are not smooth in 3D. For large datasets, such as

dynamic 4DCT images with multiple phase images, manual segmentation is not

feasible. Obtaining accurate lung segmentation for ARDS images is a major barrier

that prevents routine use of qCT for ARDS in clinical and research settings.

Recently, deep learning with ConvNet models have dominated across a wide

range of applications in computer vision, with the ability to perform image classification,

localization, segmentation, and registration at human-level accuracy. Deep learning

enables computers to learn directly from raw data rather than explicitly defining a

rule-based system or learning from human engineering features. Deep learning based

systems have shown to be more robust and computationally efficient. The majority

of development of deep learning using ConvNets has been on 2D natural images,

however, this technique has also been applied to medical imaging. ConvNets are

successfully detecting skin cancer [35], classifying lung nodules [127], and segmenting

various anatomical structures and diseases [110, 81, 119, 4, 128]. A survey on deep

learning applied to medical imaging is given in [82].

A major barrier to using ConvNets for medical image segmentation is that the
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memory requirement for large 3D images exceeds the limited amount of memory on

GPU cards. To overcome this barrier, most methods extract 2D slices or 3D patches

with local extent. These approaches sacrifice global information and 3D smoothness in

favor of high-resolution. Another barrier for using deep learning in medical imaging is

the availability of labeled training data. Deep learning methods require large training

datasets to fit the millions of free model parameters. It is especially challenging to

obtain expert annotated training data for volumetric medical images, which typically

have upwards of 500 2D slices in a single image. Manual annotation of these images

requires the time and cost of a medical expert. Furthermore, many interesting

research involves rare diseases yielding very small cohorts of subjects.

These challenges need to be addressed for successful application of ConvNets

for segmentation of ARDS lungs. Global contextual information, such as the surrounding

anatomical features, are necessary for segmentation of injured lung as local intensity

is non-distinguishable from surrounding tissue. Current methods that use 2D slices or

3D crops are not ideal as this removes global features. Furthermore, limited annotated

training data of ARDS lungs is available due to the time necessary to produce manual

segmentations. The main contributions of this work are as follows:

• Multi-resolution ConvNet model which has the capacity to learn both local and

global features in large volumetric medical images.

• Fully automated and computationally efficient segmentation of lungs with ARDS

in CT images.
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• Cross-species segmentation of ARDS subjects in a unified model using limited

annotated training data.

The novel multi-resolution ConvNet cascade makes use of both low-resolution

and high-resolution models to enable multi-scale learning. We hypothesize a method

that makes use of both global and local information is is superior to a model that

uses only local or global for this type of injury. The importance of global and

local information is explored by comparing the proposed model to a conventional

high-resolution, and which uses image crops, and a low-resolution model, which

uses aggressive downsampling. The high-resolution model sacrifices global contextual

information in favor of high-resolution information whereas the low-resolution model

sacrifices high-resolution detail in favor of global context. A transfer learning approach

is used which allows training the system with a limited amount of ARDS training data.

First a model is learned using a large dataset of human subjects, without ARDS.

Subsequently this model is tuned for cross-species ARDS segmentation is learned by

fine-tuning the human model using a dataset with multiple animal species.

5.2 Datasets and Reference Standards

For this study, we utilized a dataset consisting of CT scans from four species:

human, canine, porcine, and ovine. Hereinafter, the collection of human images

is referred to as the human dataset and the collection of canine, porcine, and ovine

images is referred to as the animal dataset. The human dataset is used for pre-training

and the animal dataset is used for fine-tuning. The human dataset consists of 3418

images, including 3113 images of subjects with chronic obstructive pulmonary disorder
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(COPD) and 305 images of subjects with idiopathic pulmonary fibrosis (IPF). The

animal dataset consists of 301 images of subjects with various experimental models

of ARDS: 76 images of canine subjects with an oleic acid model of ARDS, 152

images of porcine subjects with an oleic acid model of ARDS, 27 images of ovine

subjects with a saline lavage model of ARDS, and 46 images of ovine subjects with a

lipopolysaccharide (LPS) model of ARDS.

5.2.1 Human Dataset

The human dataset consisted of scans acquired from three large-scale clinical

trials: COPDGene, SPIROMICS, and PANTHER-IPF. COPDGene is a large multi-institutional

clinical trial studying genetics and imaging biomarkers of COPD subjects [115]. The

subset of subjects used in this study had images acquired at total lung capacity

(TLC), functional residual volume (FRC), and residual volume (RV). TLC scans

were acquired at 120 kVp and 200 mAs. FRC and RV scans were acquired at

120 kVp and 50 mAs. See [115] for full imaging protocol. SPIROMICS is also a

multi-institutional clinical trial studying subpopulations and intermediate outcomes

in COPD subjects [23, 129, 22]. The subjects used in this study had images acquired

at TLC and RV, see [129] for full imaging protocol. The IPF dataset was obtained

from an ancillary study of PANTHER-IPF [93, 94]. This study used high-resolution

CT images to identify IPF textural features and their relations to disease progression [122].

This dataset consisted of subjects with TLC scans, see [122] for full imaging protocol.

Lung segmentations for all human images were generated using Pulmonary Analysis

Software Suite (PASS, University of Iowa Advanced Pulmonary Physiomic Imaging
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Laboratory [55]) followed by manual editing.

5.2.2 Animal Dataset

5.2.2.1 Porcine Dataset

The porcine dataset was obtained from a study of alternative mechanical

ventilation modalities to treat ARDS, approved by the University of Iowa Institutional

Animal Care and Use Committee. Subjects approximately 10 to 15 kg in size were

scanned under baseline conditions and following maturation of acute lung injury

induced by infusion of oleic acid into the superior vena cava. 3DCT images were

acquired during breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, 20,

25, and 30 cmH2O. 4DCT images were acquired during mechanical ventilation using

three ventilator modalities: conventional pressure-controlled ventilation, high-frequency

oscillatory ventilation, and multi-frequency oscillatory ventilation [58]. All images

were acquired using a Siemens Somatom Force 128-slice scanner, with 120 kVp, 90

mA s, and 0.5 mm slice thickness for 3DCT, or 80 kVp, 150 mAs, and 0.6 mm slice

thickness for 4DCT. The 4DCT images have a limited axial coverage of 5.76 cm,

which excludes the apex and base of the lungs. Manual 3DCT lung segmentations

were generated semi-automatically using PASS software and manually corrected.

4DCT lung segmentations were generated semi-automatically using thresholding and

connected components analysis followed by manual correction using 3D Slicer software [36].

5.2.2.2 Canine Dataset

The canine dataset was obtained from a study of respiratory mechanics in

subjects with ARDS, approved by the Johns Hopkins University Institutional Animal
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Care and Use Committee. Subjects approximately 22 to 33 kg in size were scanned

under baseline conditions and following maturation of acute lung injury induced by

infusion of oleic acid into the pulmonary artery. 3DCT images were acquired during

breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, and 20 cmH2O.

Images were acquired using a Siemens Somatom Sensation 16-slice scanner, with

137 kVp, 165 mA s, and 2.5 mm slice thickness. Manual lung segmentations were

generated semi-automatically using PASS software and manually corrected.

5.2.2.3 Ovine Dataset 1

The first ovine dataset was obtained a study of prone vs. supine positioning to

treat subjects with ARDS, approved by the Massachusetts General Hospital Institutional

Animal Care and Use Committee. Subjects approximately 20 to 30 kg in size were

scanned following acute lung injury induced by saline lavage. 3DCT images were

acquired during breath hold maneuvers at inflation levels corresponding to end-expiration

(PEEP 5 cmH20), end-inspiration (tidal volume 8 mL/kg), and mean airway pressure

during mechanical ventilation. Images of prone subjects were flipped to align anatomical

features to a corresponding supine orientation. Images were acquired using a Siemens

Biograph combined PET-CT scanner, with 120 kVp, 80 mA s, and 0.5 mm slice

thickness. Manual lung masks were generated semi-automatically using PASS and

manually corrected.

5.2.2.4 Ovine Dataset 2

The second ovine dataset was obtained a study of subjects with ARDS, approved

by the Johns Hopkins University and University of Iowa Institutional Animal Care
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and Use Committees [37]. Subjects approximately 25 to 45 kg in size were scanned

under baseline conditions and following acute lung injury induced by intravenous

infusion of lipopolysaccharide . 3DCT images were acquired using respiratory-gated

CT imaging at inflation levels corresponding to end-expiration and end-inspiration

during mechanical ventilation. Images were acquired using a Siemens Somatom

Sensations 16- or 64-slice scanner, with 120 kVp, 250 or 180 mA s, and 1.5 or 1.2 mm

slice thickness. Manual lung segmentations were generated semi-automatically using

PASS and manually corrected.

5.3 Methods

5.3.1 Overview

A multi-resolution ConvNet model is proposed for the task of lung segmentation

in CT images (Section 5.3.3.3), designed to handle severely injured lungs across

multiple animal specials. The multi-resolution model is compared to each individual

component of this model: a low-resolution model (Section 5.3.3.1) and a high-resolution

model (Section 5.3.3.2). All models make use of the same underlying ConvNet

architecture, called Seg3DNet (Section 5.3.2), however, the spatial resolution of the

training data is varied. Training using images of different resolutions results in a

different range of feature scales learned by each model. Due to the limited number of

scans for each species in the animal dataset, transfer learning from the human dataset

is used for training all models (Section 5.3.4).



www.manaraa.com

61

Figure 5.1. Seg3DNet architecture. The number of channels for each image
representation is denoted in the lower left corner of each cube. For the encoder
module, we define Ni = 2i+5 so that the number of activation maps increases by a
factor of two at each level. The number of kernels used in each convolutional layer
can be inferred by the number of activation maps in the layer’s output representation,
i.e., the first convolutional layer has N0 = 20+5 = 32 kernels. The relative spatial size
of the activation maps are drawn to scale. At each level the spatial dimensions of the
feature representation gets downsampled by a factor of two.

5.3.2 Convolutional Neural Network

The underlying ConvNet architecture used in each of the three models is a

fully convolutional network (FCN) called Seg3DNet [49], see Figure 5.1. The network

has an encoder and decoder module, similar to the popular U-Net architecture [119],

however, Seg3DNet is extended to three spatial dimensions and the decoder was

designed to use less memory. The input to the network is an image with three

spatial dimensions and the output is an image with three spatial dimensions and

the same size as the input image. The input image is transformed to increasing
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abstract image representations using a hierarchy of network layers. Each intermediate

image representation has three spatial dimensions and a fourth dimension representing

different feature types. Henceforth, we will refer to the fourth dimension as the

channel dimension, analogous to that of an RGB images. The output of Seg3DNet is

an image with |Y | channels, where Y is the class set. The task of lung segmentation is

treated as a binary segmentation problem, i.e., |Y | = 2 where the classes correspond

to lung and background.

The encoder network consists L resolution levels. Each resolution level li

consists of two convolutional layers followed by a max pooling layer. The decoder

network upsamples the image representation at the end of each level back to the input

image resolution using deconvolution layers and combines the multi-scale features

using two subsequent convolutional layers. Each voxel in the output image is a floating

point number corresponding to the probability that the voxel is part of the lung field.

Convolutional layers use a kernel with spatial extent of 3 × 3 × 3 voxels and

zero-padding is used such that the spatial size of the image representation remains

unchanged. Max pooling with a kernel size of 2× 2× 2 voxels and stride of 2× 2× 2

voxels is used which effectively spatially downsamples the image representation by a

factor of two along each spatial dimension, with the number of feature maps remaining

unchanged. Batch normalization and a rectified linear unit (ReLu) activation function

are used after each convolutional layer, with the exception of the last layer. The last

layer uses a softmax vector nonlinearity (Equation 5.1). The output of the softmax

function gives the conditional probability distribution that a voxel x belongs to each
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y ∈ Y .

P (Y = y|x) =
efy(x)∑
j∈Y e

fj(x)
. (5.1)

For a binary classification, the predicted probability distribution can unambiguously

be represented as a single floating-point number. The predicted probability that x

belongs to the lung is denoted as ŷ(x). The predicted probability that x belongs to

the background can be inferred as 1− ŷ(x).

5.3.3 Models

5.3.3.1 Low-Resolution Model

The low-resolution model consists of a single Seg3DNet which is trained using

aggressively downsampled CT images and lung segmentations. All training images

are downsampled to constant image size of 64× 64× 64 voxels, regardless of original

size. This corresponds to a downsampling factor of roughly eight along each spatial

dimension. At this image size, the entire image can be input to the network which

allows for global features to be learned, however, exact boundary information is lost

with the downsampling. Gaussian smoothing is performed prior to downsampling to

avoid aliasing. The output of the low-resolution model is upsampled to the original

resolution using b-spline interpolation.

5.3.3.2 High-Resolution Model

The high-resolution model consists of a single Seg3DNet which is trained using

high-resolution CT images. The CT images are resampled to isotropic voxels: 1 mm

isotropic voxels for humans, dogs, and sheep and 0.6 mm isotropic voxels for pigs.

The downsampling is performed to achieve consistent voxel sizes and relative scale
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between scans and species. This corresponds to a downsampling factor of less than

two along each dimension. At this high-resolution, the entire CT image cannot fit into

GPU memory. Therefore, axial slabs of size 256 × 256 × 32 are sampled at multiple

axial positions are used for training the model. This limits the amount of global

context that can be learned by the high-resolution model, as features from the entire

lung field cannot be learned.

5.3.3.3 Multi-Resolution Model

The multi-resolution model consists of two Seg3DNet’s, utilizing both a low-resolution

model and a high-resolution model, and linking the models to allow information

learned by the low-resolution model to by exploited by the high-resolution model.

The two Seg3DNet’s are trained sequentially. In the first stage, the low-resolution

model is trained on aggressively downsampled images as described in Section 5.3.3.1.

In the second stage, a high-resolution model is trained, similar to the model described

in Section 5.3.3.2, however, the low-resolution model prediction is included in the

input in addition to the high-resolution CT image. Combining the low-resolution and

high-resolution models eliminates the necessity of choosing between global contextual

information and precise boundary detail. The multi-resolution model is illustrated in

Figure 5.2.

5.3.4 Training

Transfer learning [99] is used for training all models. A model is pre-trained

using the human training dataset. The model learned from the human dataset is used

to initialize the animal model and fine-tuning is then performed using the animal
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Figure 5.2. Multi-resolution model. The upper pipeline corresponds to the
low-resolution model and the lower pipeline corresponds to the high-resolution model.
The dashed line connection links the two models, allowing the global information
learned in the low-resolution model to be used in the high-resolution model.

dataset.

Due to the limited number of animal scans with ARDS, a five-fold cross

validation is performed for training the animal model. The animal dataset is split

into five groups (approximately 60 images per group), four of the groups are used for

training and the performance is evaluated on the left out group. This is performed

five times, leaving out a different group each time and evaluating on that left out

group. This allows all images in the animal dataset to be used for both training

and evaluation. Each of the five groups have the same number of images and

approximately equal representation of each species. The five-fold cross validation

is done for training all models, using the same splits for fair comparison.
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A binary cross entropy loss function is used for training, the loss for each voxel

x is given by

L(x) = −(y(x) log(ŷ(x)) + (1− y(x)) log(1− ŷ(x))) (5.2)

where y(x) is the true class label for voxel x, y(x) = 1 for lung and y(x) = 0 for

background, and ŷ(x) is the predicted probability that voxel x belongs to the lung

class. The total loss for each image is given by the average loss over all voxels in

the image. The loss function is optimized with respect to the free parameters (the

convolution kernels) using standard backpropagation. Adam optimization [67] is used

for training, a learning rate of 5 × 10−4 is used for pre-training, and a learning rate

of 5 × 10−5 is used for fine-tuning. Prior to pre-training, all free parameters are

initialized using Xavier normal initialization [50]. The networks are trained using a

P40 NVIDIA GPU with 24 GB RAM. Total training time is approximately 48 hours

for each model.

5.3.5 Post-processing

The output predicted by each model is a lung probability image, i.e. an image

with floating point values between 0 and 1 representing the probability that each

voxel belongs to the lung. We adopt a simple post-processing step to obtain a

final binary lung segmentation. A binary threshold is applied to the probability

image using a cutoff of p = 0.5, which is empirically determined. Subsequently, 3D

connected component analysis is performed on the thresholded image. For images

from the human dataset, the two largest connected components, are retained and

any remaining components are discarded. The two components correspond to the
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left and right lungs. In some cases the left and right lung form one connected

component, in these cases only the largest connected component is retained. This is

determined automatically by taking the ratio of volumes for the two largest connected

components. For the animal dataset, only the largest connected component is retained

and any other components are discarded. For all animals used in this study, the left

and right lungs are connected by a middle lobe.

5.4 Experiments and Results

5.4.1 Metrics

Lung segmentation performance was evaluated by comparing the computer

generated segmentation to a manual lung segmentation. Two metrics were used to

assess agreement: the Jacaard index and average symmetric surface distance (ASSD).

The Jacaard index is a measure of volume overlap given by

J(P,M) =
|P ∩M|
|P ∪M|

, (5.3)

where | · | is the set cardinality and P ∩M and P ∪M are the intersection and union,

respectively, of the set of voxels predicted to be lung in the automated segmentation

P and the set of voxels defined as lung in the manual segmentation M . The Jacaard

index has values ranging from zero to one, with one indicating perfect agreement.

ASSD was used to measure the distance between the predicted lung boundary BP

and manually generated lung boundary BM. The distance between a voxel x and a

set of voxels on boundary B is defined as

D(x,B) = min
y∈B

d(x,y), (5.4)
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where d(x,y) is the Euclidean distance between voxels x and y. The ASSD between

BP and BM is defined as

ASSD =
1

|BP|+ |BM|
×
( ∑

x∈BP

D(x,BM) +
∑
y∈BM

D(y,BP)

)
. (5.5)

ASSD is greater or equal to zero, with zero being perfect agreement.

5.4.2 Quantitative Comparison of Models

The proposed multi-resolution model, the low-resolution model, and the high-resolution

model were quantitatively evaluated by comparison to manual segmentations. A

paired t-test was performed to test for significant differences between the models.

5.4.3 Results

Surface renderings of the different models are illustrated in Figure 5.3. Figure 5.4

illustrates multiple axial slices of a porcine subject with the multi-resolution model

result. Surface renderings, minimum intensity projections, and maximum intensity

projections are illustrated in Figure 5.5 to emphasize extent of injury and the inclusion

of this injury in the predicted segmentation.

The distributions of ASSD and Jacaard for each model are displayed in Figure 5.6.

Paired t-tests revealed that the multi-resolution model had a significantly lower

(higher) ASSD (Jacaard) compared to both the low-resolution model and the high-resolution

model (p < 0.001), and the high-resolution model had a significantly lower (higher)

ASSD (Jacaard) compared to the low-resolution model. Maximum surface distance

(Max SD) distributions for each model are displayed in Figure 5.7. The results show

that the multi-resolution model achieved lower Max SD and the high-resolution had
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(a) (b) (c) (d) (e)

Figure 5.3. Surface rendering or lung segmentations porcine, canine, and ovine
subjects in rows one, two, and three, respectively. (a) axial slice of CT, (b) manual
(c) low-resolution model, (d) high-resolution model, (e) multi-resolution model.

Figure 5.4. Multi-resolution network results for a porcine subjects. Multiple axial
slices show the diffuse lung injury.
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Figure 5.5. Multi-resolution model results. Left to right: contour of predicted
segmentation overlaid on CT image, surface rendering of predicted segmentation,
minimum intensity projection of voxels included in predicted segmentation, and
maximum intensity projection of voxels included in predicted segmentation.

the largest Max SD. Results stratified by species and cross validation fold are displayed

in Figures 5.8 and 5.9, respectively. The results show all models performed best on

the porcine datasets and worst on the ovine datasets. All folds of the cross validation

performed equally well.

Figure 5.6. ASSD and Jacaard index distributions over all animal species.
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Figure 5.7. Distribution of maximum surface distance for each model.

The percent of lung volume that is non-aerated is used as a surrogate for

lung injury severity. Voxels with HU greater than 100 are considered non-aerated.

Figure 5.10 show the proposed method performance vs. percent non-aerated lung

volume. Linear regression was used to model the relationship between injury severity

and segmentation performance. Linear correlation coefficient was calculated to assess

the model fit. The model slope for injury severity vs. ASSD was 0.011 (R2 = 0.096,

p < 0.001) for the low-resolution model, 0.026 (R2 = 0.298, p < 0.001) for the

high-resolution model, and 0.013 (R2 = 0.206, p < 0.001) for the multi–resolution

model. The model slope for injury severity vs Jacaard index was -0.001 (R2 = 0.201,

p < 0.001) for the low-resolution model, -0.002 (R2 = 0.437, p < 0.001) for the

high-resolution model, and -0.001 (R2 = 0.316, p < 0.001) for the multi–resolution

model.
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Figure 5.8. ASSD and Jacaard index distributions stratified by species.Blue is
low-resolution model, green is high-resolution model, and red is multi-resolution
model.

Figure 5.9. ASSD and Jacaard index distribution stratified by cross validation
fold. Blue is low-resolution model, green is high-resolution model, and red is
multi-resolution model.
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Figure 5.10. ASSD and Jacaard index stratified by percent of lung volume that
is non-aerated. A lower ASSD and higher Jacaard index corresponds to better
segmentation performance. Blue is low-resolution model, green is high-resolution
model, and red is multi-resolution model.

5.5 Discussion

The motivation of this work was to develop a method for cross species lung

segmentation targeted towards subjects with a lung injury similar to ARDS. This

injury is particularly challenging to segment due to the diffuse injury in the dependent

lung, resulting in little or no contrast between the posterior lung boundary and the

surrounding soft tissue. A novel multi-resolution ConvNet model was proposed to

incorporate both high-resolution local features and global contextual information.

Current paradigms in medical imaging do not favor sacrificing spatial resolution,

and instead preserve the spatial resolution at the cost of removing global context.

Training ConvNets is done using high-resolution 2D slices or 3D crops. In this work

a multi-resolution model is proposed which has the capacity to incorporate both
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global and local resolution. The multi-resolution model was compared to each of its

components - a high-resolution model and a low resolution model. The high-resolution

model is trained on crops, thus removing some global information. The low-resolution

model is trained on aggressively downsampled images. All models showed high

performance in terms of ASSD and Jacaard Index, with the multi-resolution model

out-performing the other models.

The high-resolution model has less global context compared to the low-resolution

and multi-resolution models, however, this model is still trained on large 3D crops.

To further evaluate the influence of global information, the proposed method could

be compared to training on 2D slices and small 3D patches which have less global

context compared to the high-resolution model used in this study. The low-resolution

model performed the worst of the three models, however, the model still performed

well considering the downsampling factor that was used (approximately a factor of

eights). Furthermore, compared to the high-resolution model, the low-resolution

model requires less training and inference time and can be trained using a GPU

with less memory. Therefore, this model may be preferred over a 2D slice model

which has very limited global context and sacrifices 3D smoothness.

All models were evaluated on three species with models of ARDS. All models

performed best on the porcine dataset and worst on the ovine dataset. The worse

performance on the ovine dataset can likely be attributed to the fewer number

of training data for this species. The proposed method nonetheless showed high

performance on all species. Rule-based systems often fail to generalize across species,
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requiring the method to be tuned for each dataset. More advanced methods such

as statistical shape models also cannot seamlessly handle multiple species, since an

underlying assumption is that the data comes from a Gaussian distribution.

Subjects were stratified by injury severity using percent of non-aerated lung

volume as a surrogate for injury severity. All models showed a decrease in segmentation

performance with increase in injury severity was observed for both Jacaard index

and ASSD. The high-resolution model showed the largest decline in performance

with increasing injury severity, indicating that global information becomes more

important for cases that have more injury. Although there is a small decrease in

performance with increasing injury severity, the multi-resolution model still showed

high performance for highly diseased subjects, voxel-level ASSD error was achieved

for severe cases with 30% non-aeration. Another factor to consider is the validity

of the manual segmentations in these severely diseased cases. More injury results in

more subjectivity in manual tracing, which could explain the decrease in performance.

An additional benefit of the proposed method is that it generates lung segmentations

that have a smooth surface in 3D, compared to manual segmentation which can vary

by several millimeters between slices. Manual segmentation was performed on 2D

slices, and when the lung boundary is poorly defined manually choosing a consistent

boundary between slices is very difficult. Defining the lung boundary in lungs with

diffuse consolidation is very subjective. Intra- and inter-observer variation is likely

very high on these cases, however, only a single manual segmentation was available

per image due to the amount of time required to do the manual segmentation. In
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future work it would be interesting to evaluate the variations in manual tracings

between different analysts and within the same analyst.

The run-time for executing the proposed coarse-to-fine model on a single

3D image is 40 seconds when run on a GPU. If a GPU is unavailable, the model

can be executed on a CPU with a run-time of approximately 2.5 minutes. Manual

segmentation of these images takes anywhere from 4 to 6 hours, depending on the

severity of the injury. This time savings make quantitative CT analysis on ARDS

patients feasible in both clinical and experimental settings.

5.6 Conclusion

In this work, a multi-resolution ConvNet cascade was proposed that enables

learning of both local and global features in large 3D images despite limitations in

GPU memory. This method was applied to segmentation lung with ARDS in three

animal species. We explored the hypothesis that both global and local features are

important for segmentation of injured lungs by comparing the multi-resolution model

to a low-resolution model and a high-resolution model. The proposed multi-resolution

model performed best in terms of Jacaard Index and ASSD, demonstrating the

importance of both global and local features for the task of lung segmentation in

injured lungs. Furthermore, we have demonstrated that the proposed method works

across three animal species including canine, porcine, and ovine subjects using a

limited number of training data.
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CHAPTER 6

PULMONARY FISSURE SEGMENTATION

Published as: SE Gerard, TJ Patton, GE Christensen, JE

Bayouth, and JM Reinhardt. FissureNet: A deep learning

approach for pulmonary fissure detection in CT images. IEEE

Trans. Medical Imaging, 2018.

Pulmonary fissure detection in computed tomography (CT) is a critical component

for automatic lobar segmentation. The majority of fissure detection methods use

feature descriptors that are hand-crafted, low-level, and have local spatial extent. The

design of such feature detectors is typically targeted towards normal fissure anatomy,

yielding low sensitivity to weak and abnormal fissures that are common in clinical

datasets. Furthermore, local features commonly suffer from low specificity, as the

complex textures in the lung can be indistinguishable from the fissure when global

context is not considered. We propose a supervised discriminative learning framework

for simultaneous feature extraction and classification. The proposed framework, called

FissureNet, is a coarse-to-fine cascade of two convolutional neural networks. The

coarse-to-fine strategy alleviates the challenges associated with training a network

to segment a thin structure that represents a small fraction of the image voxels.

FissureNet was evaluated on a cohort of 3706 subjects with inspiration and expiration

3DCT scans from the COPDGene clinical trial and a cohort of 20 subjects with 4DCT

scans from a lung cancer clinical trial. On both datasets, FissureNet showed superior

performance compared to a deep learning approach using the U-Net architecture and

a Hessian-based fissure detection method in terms of area under the precision-recall
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curve (PR-AUC). The overall PR-AUC for FissureNet, U-Net, and Hessian on the

COPDGene (lung cancer) dataset was 0.980 (0.966), 0.963 (0.937), and 0.158 (0.182),

respectively. On a subset of 30 COPDGene scans, FissureNet was compared to a

recently proposed advanced fissure detection method called derivative of sticks (DoS)

and showed superior performance with a PR-AUC of 0.991 compared to 0.668 for

DoS.

6.1 Introduction

Computed Tomography (CT) measures X-ray projections of the body at different

angles to reconstruct a volumetric image of the anatomy. The contrast produced in a

CT image reflects differences in X-ray photon attenuation, which in the lungs broadly

reflects tissue density. Technological advancements in CT hardware have made it

possible to scan the entire thoracic cavity in less than one second and reconstruct

images with submillimeter spatial resolution. These properties make CT imaging the

standard modality for imaging the intricate structures of the lung. Pulmonary CT is

routinely used for diagnostics, treatment planning and delivery, and post-intervention

evaluation.

CT images provide a rich source of information regarding the extent and

spatial distribution of pulmonary disease. Computer-aided systems are essential

for objective quantification and characterization of the complex information present

in the image. Algorithms have been developed for detection and classification of

nodules [142], texture classification of obstructive disease [133], pulmonary embolism

detection [118], and quantitative airway analysis [24]. Although CT is an anatomical
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imaging modality, functional information about the lung may be derived from CT

scans collected at different inspiration levels using image registration [117].

The human lungs are composed of five lobar compartments, which are separated

anatomically by three lobar fissures. The left oblique (major) fissure (LOF) separates

the lower and upper lobes of the left lung. The right oblique (major) fissure (ROF)

separates the lower lobe from the middle and upper lobes, and the right horizontal

(minor) fissure (RHF) separates the middle and upper lobes of the right lung. It is

often of clinical interest to perform quantitative analysis within each lobe individually.

Boueiz et al. recently identified subgroups of upper-lobe-predominant emphysema and

lower-lobe-predominant emphysema and found associations with clinical and imaging

outcomes [10]. Accurate knowledge of lobar anatomy is critical for successfully

treating severe emphysema with bronchoscopic lung volume reduction [92]. Lobar

information also serves as a precursor to other image analysis algorithms including

image registration. Currents- and varifolds-based registration algorithms rely on

accurate surface representations of the lungs, lobes, and vessel trees [100].

The lobes are generally anatomically independent, but incomplete fissures

are possible and the detection of incompleteness may be clinically relevant. An

individual’s unique lobar structure is likely to influence lung tissue mechanics and

patterns of regional ventilation. Fissure incompleteness and the resulting collateral

ventilation reduces the efficacy of endobronchial valves [71, 72, 32]. Gopelmann et

al. recently showed that apical vs. basal emphysema distribution varies with fissure

integrity [52]. However, Pu et al. found no relationship between fissure integrity and
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COPD severity [112].

Natural variability in lobar anatomy has impeded the development of robust

CT analysis methods for fissure and lobar segmentation. In cross-sectional CT

images the fissures appear as thin surface-like structures (less than 1 mm thick)

with higher image intensity than the surrounding lung parenchyma. This makes it

difficult to identify fissures in low-dose or thick-slice CT scans. Fissure segmentation

in pathological lungs is further complicated by diseases that locally resemble fissures,

for example, bullous lung disease and fibrosis may locally resemble fissures.

Despite these challenges, many attempts have been made to design automatic

methods for lobar segmentation [161, 146, 74, 163, 141, 75, 114]. The majority of

these methods consist of four common modules: lung segmentation, fissure detection

using local appearance information, removal of falsely identified fissures, and surface

fitting to interpolate and/or extrapolate incomplete fissures. Doel et al. presented an

extensive review on pulmonary lobe segmentation and proposed that these individual

components should be independently developed and evaluated, opposed to comparing

entire pipelines [30]. We follow this proposal and focus on the fissure detection in this

work.

Several methods have been proposed for the detection of fissures in CT images.

Eigenanalysis of the Hessian matrix is commonly used to exploit the characteristic

property that plane-like structures have one direction with large curvature in the

intensity profile and two orthogonal directions with vanishing intensity curvature [42,

123, 80, 152, 75]. Zhang et al. used a ridgeness operator based on 2D multi-local level
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set extrinsic curvature measure with structure tensor analysis (MLSEC-ST) [161, 83].

Other works use knowledge of fissure appearance on 2D cross sections to design a filter

bank of 2D line filters to detect fissure structures [70, 156, 157]. Traditional machine

learning approaches use domain-specific hand-crafted features and labeled training

data to train a classifier. van Rikxoort et al. used a feature set including intensity,

Gaussian derivatives, gradient, and Hessian eigenvalues with labeled training data

to build a kNN classifier [148]. The authors showed superior performance compared

to conventional unsupervised fissure detection. Wei et al. trained an artificial neural

network using texture-derived image features. However, a limitation of this method

is that it requires extensive post-processing and only works on major fissures [151].

These existing fissure detection methods are limited to local descriptors of

fissure shape and appearance. Although local information is necessary for the precise

localization of the fissure, we argue that it is not sufficient. Weak and incomplete

fissures diminish local response, and pulmonary disease can locally resemble fissures.

We hypothesize that knowledge of global and contextual information can improve

specificity by providing guidance when the fissure signal is low or noisy. However, it

is far more challenging to design abstract features, such as those that capture global

context, compared to low-level features, such as edges. Additionally, hand-crafting

features requires domain expertise, and generalizing such a framework to other tasks

is not trivial. Alternatively, convolutional neural networks (ConvNets or CNNs) are

capable of learning abstract features directly from training data.

Several ConvNet architectures have been proposed for semantic segmentation;
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the majority are symmetrical networks consisting of an encoder and corresponding

decoder [119, 7, 125]. Compared to a classification ConvNet which yields a single

prediction for each class, a segmentation ConvNet produces a prediction map that has

the same spatial resolution as the input. U-Net and SegNet are notable encoder-decoder

networks, each of which incorporate skip connections between corresponding encoder

and decoder elements to preserve precise localization information that would otherwise

be lost with pooling operations [119, 7]. These symmetrical networks are memory

intensive and cannot be trained on entire volumetric medical images due to current

GPU memory limitations. The majority of ConvNet methods use either 2D slices

or small image crops to accommodate memory limitations thereby compromising the

capacity of the network to learn large-scale 3D features or global patterns.

For the task of fissure segmentation, both 3D structure and global context are

critical for accurate segmentation. Therefore 2D slices or patchwise approaches are

not ideal. Furthermore, directly training a network to segment fissures is challenging

due to the large class imbalance between fissure and non-fissure voxels. High accuracy

could be achieved by learning the trivial classifier that always predicts the majority

class (i.e. non-fissure).

To address these challenges, we propose a new coarse-to-fine deep learning

segmentation approach called FissureNet. FissureNet achieves superior segmentation

performance compared to other methods by concatenating two Seg3DNet ConvNets.

The new Seg3DNet1 architecture is less memory-intensive compared to U-Net and

1While Seg3DNet and the existing SegNet [7] are similar in name, the proposed Seg3DNet
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SegNet, enabling it to learn global contextual information from entire lung images.

Seg3DNet is a generic 3D segmentation network suitable for many applications.

Within FissureNet, the first Seg3DNet is trained to detect an approximate fissure

region of interest (ROI) and the second Seg3DNet is trained to detect precise fissure

location within the ROI. The coarse-to-fine approach used by FissureNet overcomes

the challenges associated with training a network to segment a thin structure that

represents a very small fraction of the total voxel count.

6.2 Methods

6.2.1 Overview

We model fissure detection as a probabilistic classification problem. Given a

dataset X and a finite class set Y , a probabilistic classifier models the conditional

probability distribution P (Y |X). That is, given a feature vector x ∈ X, the classifier

predicts a probability distribution over the class set Y . The features and the conditional

probability distribution are learned jointly through end-to-end training of a Seg3DNet.

For pulmonary fissure classification the class set Y consists of the three fissures

and a non-fissure class, such that all voxels that are not fissure are assigned to the

non-fissure class. The number of fissure voxels is very small compared to the number

of non-fissure voxels; there is approximately one fissure voxel for every 100 non-fissure

voxels within the lung mask (at the image resolution used in this study). FissureNet

uses a coarse-to-fine approach by cascading two Seg3DNets (Fig. 6.1). The first

Seg3DNet is trained to detect an approximate fissure region of interest (ROI) and

uses a different architecture and is not related to SegNet.
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the second Seg3DNet is trained to detect the precise fissure location within the ROI.

Separate pipelines are trained for the left and right lungs, yielding four total Seg3DNet

classifiers: left fissure ROI, right fissure ROI, left fissure, and right fissure. The

proposed Seg3DNet architecture is illustrated in Fig 6.2.

Figure 6.1. FissureNet: coarse-to-fine network cascade. Black boxes represent four
Seg3DNet classifiers, each trained for a different classification task as indicated in
the box. For the right lung pipeline (top), the CT image is masked with the right
lung mask and input to the right fissure ROI Seg3DNet. The output of the ROI
Seg3DNet represents the probability that each voxel is right oblique ROI (PROR),
right horizontal ROI (PRHR), and non-fissure ROI (PNR). The input to the right
fissure Seg3DNet is the masked CT image and the probability maps PROR or PRHR.
The output of the right fissure Seg3DNet gives the probability that each voxel is right
oblique fissure (PROF ), right horizontal fissure (PRHF ), and non-fissure (PNF ). The
left lung pipeline (bottom) is similar, except each classifier only predicts two classes
corresponding to left oblique fissure and non-fissure.



www.manaraa.com

85

6.2.2 Convolutional Neural Network

A ConvNet is a specialized neural network model designed to exploit patterns

in spatially correlated data, such as images and videos. At a high level, a ConvNet

has multiple layers of learned feature detectors arranged hierarchically. The feature

detectors in each layer are local, however, the composition of layers allows the spatial

extent defined on the input image, called receptive field, to grow with layer depth.

This design gives the network the capacity to learn global features, without the

computational overhead and increased number of parameters required for large feature

detectors. The feature detectors are shared spatially, making a given feature relevant

at any location in the image. Layers with feature detectors are called convolutional

layers. The feature detectors, or kernels, are not explicitly encoded but are the

parameters being learned through optimization. Convolutional layers are typically

followed by an elementwise nonlinearity and interleaved with pooling layers which

serve to reduce the spatial resolution.

Each layer in a ConvNet takes a feature representation as input, performs an

operation to transform the input, and produces a new feature representation as the

output. The layers are arranged hierarchically: the output feature representation

of one layer serves as the input to the following layer. Each feature representation

consists of a set of spatial activation maps, each representing a different feature type.

The activation maps are concatenated along a non-spatial dimension, i.e. the channel

dimension, to form the feature representation. Therefore, in a 3D ConvNet the

intermediate feature representations are all 4D images. The channel dimension is
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analogous to that of an RGB image, i.e., the voxels are vector-valued and each vector

element represents a different feature type.

The ConvNet parameters (feature detectors) are learned from labeled training

data using backpropagation [120]. Starting with randomly initialized parameters,

a training example is propagated through the network and a prediction is made.

The dissimilarity between the prediction and the true label is quantified with a loss

function. The gradient on the loss with respect to each parameter is calculated using

backpropagation, which is a recursive application of the chain rule. All parameters

are updated to decrease the error using stochastic gradient descent, or some variant

thereof.

6.2.3 Seg3DNet

In this work, we propose a 3D ConvNet architecture for image segmentation

called Seg3DNet (Fig. 6.2). Seg3DNet consists of an encoder which generates a high

dimensional feature representation of the image, and a decoder which decodes the

features to produce a segmentation. Unlike many segmentation architectures, the

encoder and decoder modules in Seg3DNet are asymmetrical. The encoder module

consists of L resolution levels li for i = 0, 1, ..., L − 1, where the activation maps in

level li are downsampled by a factor of 2i relative to the full resolution level l0. Each

level of the encoder has two convolutional layers followed by a max-pooling layer. All

convolutional layers use 3× 3× 3 voxel kernels, and the number of kernels in level li

is given by Ni = 2i+5. After the second convolution layer of each level, max pooling

with kernel size 2 × 2 × 2 and stride of 2 produces the downsampling factor of 2
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between levels. While recent ConvNet architectures have eliminated pooling layers,

downsampling is necessary to achieve a global receptive field on large input volumes.

To mitigate the loss of precise localization information from the pooling layers, the

decoder network combines representations from all scale levels.

The decoder module condenses the representation at each scale level to a

single activation map using a convolutional layer with a single voxel kernel of size

1× 1× 1×Ni. The lower resolution activation maps are upsampled to full resolution

using nearest neighbor interpolation followed by a convolution with filter size 2i +

1, effectively performing a variant of deconvolution [96]. The resulting activation

maps, one from each scale level, are concatenated along the feature dimension to

form a multi-scale representation. Two more convolutional layers are used to combine

information from different scales.

The representation at the last layer of the Seg3DNet has |Y | activation maps

each with the same spatial dimensions as the input volume. The output at spatial

location x of activation map y, fy(x), is interpreted as an unnormalized log probability

of x belonging to class y. The softmax vector nonlinearity is used to obtain the

conditional probability distribution, given by:

P (Y = y|x) =
efy(x)∑
j∈Y e

fj(x)
. (6.1)

We denote the probability for each class y ∈ Y as Py(x). By construction, Y is a valid

probability distribution function with Py(x) ∈ [0, 1] ∀y ∈ Y , and
∑

y∈Y Py(x) = 1.

For the right lung ConvNets, we define separate classes to distinguish between oblique

and horizontal fissures. Therefore, the class set cardinality for the left and right lung
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ConvNets is |Y | = 2 and |Y | = 3, respectively.

Figure 6.2. Proposed Seg3DNet architecture. Each arrow represents an
operation performed by a layer and each cube represents the intermediate feature
representations produced by a layer. For visualization purposes, only the spatial
dimensions of the feature representations are illustrated. The number of activation
maps (size of channel dimension) is denoted in the lower left corner. For the encoder
module, we define Ni = 2i+5 so that the number of activation maps increases by a
factor of two at each level. The number of kernels used in each convolutional layer
can be inferred by the number of activation maps in the layer’s output representation,
e.g., the first convolutional layer has N0 = 20+5 = 32 kernels. The relative spatial size
of the activation maps are drawn to scale. At each level the feature representation is
spatially downsampled by a factor of two. Batch normalization and ReLU nonlinearity
are performed after each convolution except the last.

Batch normalization [62] and ReLU nonlinearities [91] are used after each

convolution layer with the exception of the last layer. All convolutional layers use

zero-padding to prevent reduction in spatial dimensions.
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6.2.4 FissureNet

As shown in Fig. 6.1, FissureNet has two parallel pipelines, each of which is

a coarse-to-fine cascade of two Seg3DNets. The first Seg3DNet is trained to detect a

fissure ROI. The original ground truth fissure segmentations are modified to produce

the fissure ROI training labels. A voxel belongs to the fissure ROI if it is located

within 5 mm of the corresponding fissure, otherwise it is non-fissure. This dilation

of the single-voxel ground truth reduces the class skewness. Additionally, by dilating

the ground truth fissure the network is able to focus on global patterns rather than

precise fissure appearance. As a result, the network is more robust to weak and

radiographically incomplete fissures. The fissure ROI allows for small imperfections

in the training data which are expected due to the nature of manually tracing a single

voxel curve.

For training the first Seg3DNet, we define the loss associated with each voxel

using categorical cross entropy of the form

L(x, Y ) = −
∑
y∈Y

ty(x) logPy(x), (6.2)

where ty(x) represents a one-hot encoding of the target label for voxel x and class y,

i.e., ty(x) is one when y corresponds to the true class and zero for all other classes

The total loss for an input image is given by

LROI =

∑
x∈Ω L(x, YROI)

|Ω|
, (6.3)

where Ω is the input image domain and YROI is ROI classifier class set.

The second Seg3DNet is trained to detect the precise fissure location. The
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original ground truth fissure segmentations are used as training labels. The loss

associated with each voxel is the same as the first Seg3DNet (6.2). However, the total

loss is a weighted average using the probability that the voxel is in a fissure ROI

LF =

∑
x∈Ω(1− PNR(x))L(x, YF)∑

x∈Ω(1− PNR(x))
, (6.4)

where PNR(x) is the probability that voxel x is non-fissure ROI as predicted by the

first Seg3DNet and YF is the fissure classifier class set. This weighting limits the

contribution of the large number of non-fissure voxels to the loss function, mitigating

the class imbalance problem while allowing for precise fissure localization.

6.2.5 Implementation

FissureNet was implemented using the open source frameworks Theano [140]

and Lasagne [28]. Training was performed using a P40 NVIDIA GPU with 24 GB

of RAM. Adam optimization was used with an initial learning rate of 5 × 10−4 [67].

All parameters were initialized using Xavier normal initialization [50]. Each network

was trained for six epochs, which took approximately 48 hours. Inference time with

the trained network is 10 seconds per lung on a consumer grade GPU card.

6.3 Experimental Methods

6.3.1 Datasets and Preprocessing

Training and testing data were acquired from the COPDGene study, a large

multi-center clinical trial with over 10,000 subjects with chronic obstructive pulmonary

disease (COPD) [115]. COPD which includes emphysema and chronic bronchitis, is

characterized by airway inflammation and large regions of trapped gas on CT.

The COPDGene image datasets were acquired across 21 imaging centers using
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a variety of scanner makes and models. Each patient had two breath-hold 3D CT

scans acquired, one at total lung capacity (TLC) with a dose of 200 mAs and one at

functional residual capacity (FRC) with a dose of 50 mAs. Original slice thicknesses

ranged from 0.625 mm to 0.9 mm. See [115] for the complete image acquisition

protocol.

A subset of 1601 subjects was selected for training and a separate disjoint

subset of 3706 subjects was selected for testing. The TLC scan and FRC scan

for each subject were utilized, producing a training dataset with 3202 scans and

a testing dataset with 7412 scans. All COPD GOLD levels [13] were used for training

and evaluation; see Table 6.1 for distribution of disease severity in training and

testing datasets. Each subject in COPDGene has a unique identifier consisting of

five numbers and one letter, e.g., 10005Q. Subjects with identifiers that begin with

values in the range 10-12 were included in the training dataset and subjects with

identifiers that begin with values in the range 13-19 were included in the testing

dataset.

An additional dataset of 20 4-dimensional computed tomography (4DCT)

scans from a lung cancer clinical trial were used were used for evaluation. The 4DCT

scans were acquired on a Siemens EDGE CT scanner with parameters of 120 kV

tube voltage, 100 mAs tube current, 0.5 second tube rotation period, 0.09 pitch, 76.8

mm beam collimation, 128 detector rows, and a reconstructed slice thickness of 0.6

mm. The 4DCT scans were acquired with audio guidance. The image data was

retrospectively sorted and reconstructed into ten phase images. A single phase from
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Table 6.1. Disease stratification for the training and
testing datasets. GOLD0-GOLD4 defined in [13].
No PFT: spirometry data not available; PRISm:
Preserved Ratio Impaired Spirometry [149]

Training Testing

GOLD0 583 1625
GOLD1 133 309
GOLD2 350 617
GOLD3 235 360
GOLD4 135 186
No PFT 28 53
Non-Smoker 0 90
PRISm 137 466

Total 1601 3706

each subject was selected for fissure evaluation, the selected phases were chosen to

represent an assorted range of tidal volumes and phases. There were no scans of this

type included in the training dataset.

Due to memory constraints on the GPU, all images were resampled to isotropic

1 mm3 voxels. For each lung, subvolumes of size 64×200×200 voxels were extracted

for training. For the majority of subjects, this crop size covers the entire sagittal view

of the lung, however, it may not cover all sagittal slices. Therefore, for training we

extracted three subvolumes centered at different sagittal slices to ensure the entire

lung was covered.

For preprocessing, CT intensity values were clamped to the range of interest for

fissure detection (i.e. -1024 HU and -200 HU) which also removes outliers caused by

calcification and metal artifacts. Voxels outside of the lung mask were set to -1024 HU.

After clamping and masking, the CT image intensities were linearly rescaled according
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to I ′(x) = I(x)−µHU

σHU
, where µHU and σHU are the mean and standard deviation of HU

values calculated over the entire training dataset and I(x) and I ′(x) are the original

HU values and rescaled image intensities, respectively, for a given voxel x.

6.3.2 Ground Truth

Lung and lobar segmentations in the COPDGene study were obtained using

a commercial software package (Apollo, VIDA Diagnostics, Coralville, IA), followed

by manual inspection and editing as needed. The Apollo software calculates a fissure

probability measure using local fissure appearance and anatomical information from

the airways and vasculature and then uses surface fitting to interpolate and extrapolate

a complete fissure. The manual correction was performed by trained analysts (professional

research assistants) with experience levels ranging from 0-4 years. Corrections were

supervised by an experienced radiologist. Manual analysts were instructed to interpolate

and extrapolate when necessary to completely divide the lung into five lobes. Fissure

segmentations were extracted automatically from the lobar segmentations by identifying

adjacent voxels with different lobe labels, producing a two-voxel thin fissure segmentation.

Fissure segmentations for the lung cancer 4DCT dataset were defined manually

by an experienced medical physics PhD student using MimVista 6.4.7 software (MIM

Software, Cleveland, OH). For this dataset, both complete fissures (forming full lobar

boundaries) and visible fissures were identified. The visible fissures were first identified

and subsequently interpolated and extrapolated to separate lobes when necessary.
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6.3.3 Comparison of Fissure Detection Methods

We compared the proposed FissureNet to three other fissure detection methods:

a conventional Hessian-based method [152], the derivative of sticks (DoS) method [157],

and a deep learning approach using the popular U-Net architecture [119]. The

Hessian-based and U-Net methods were evaluated on the entire testing dataset (7412

scans). For comparison to DoS, a subset of 30 scans from the testing dataset was

used. For this subset, three subjects were randomly selected from each GOLD level.

Both the TLC scan and the FRC scan were used for each subject. The DoS method

consists of a fissure filtering step (DoS1) and a post-processing step (DoS2). The aim

of the post-processing step is to remove falsely detected fissure voxels, particularly

those that are connected to the true fissure. This is done using a pipeline consisting of

global multi-thresholding, junction detection and removal, and connected component

analysis. The aim of the Hessian-based and DoS methods is the detection of visible

fissures and thus no interpolation or extrapolation is performed. For the U-Net

method, the depth of the U-Net was set to three levels and the branching factor was

set to four to accommodate the increased memory demand of the decoder network.

To mitigate the class imbalance, we used the approach from [119], which weights the

underrepresented class to have higher misclassification cost.

6.3.4 Evaluation Metrics

Receiver operating characteristic (ROC) curves are commonly used to evaluate

the performance of a binary classifier by measuring the tradeoff between true positive

rate (TPR) and false positive rate (FPR) at different thresholds. Similarly, precision-recall
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(PR) curves measure the tradeoff between precision and recall (recall is the same as

TPR). Recent studies have demonstrated that PR curves are better at evaluating and

comparing binary classifiers in problems with a skewed prior class probability [121].

In such cases, ROC curves tend to be overly optimistic and do not distinguish between

methods with different false positive behavior. The prior probability of fissure voxels

is very small, so we report PR results to better discriminate between methods.

For PR evaluation, we use a 3 mm margin as described in [157]. Briefly,

for calculating precision, predicted fissure voxels are categorized as true positive

(TP) or false positive (FP): TP if the voxel is within 3 mm of the ground truth

fissure or otherwise FP. Likewise, for calculating recall, ground truth fissure voxels

are categorized as TP or false negative (FN): TP if the voxel is within 3 mm of the

predicted fissure or otherwise FN. The 3 mm margin accounts for the subjectivity

in manual delineation of a thin structure with low contrast. All voxels within the

lung mask are considered for PR calculation and the ground truth is a two-voxel thin

fissure. We report the PR curve and the area under the PR curve (PR-AUC). The

optimal operating point on a PR curve is the upper right corner, and PR-AUC has

values ranging from 0 to 1, with 1 describing a perfect classifier.

We evaluated the surface distance between predicted fissure and nearest ground

truth fissure. For this analysis, we obtained hard fissure predictions by thresholding

the probability output. The optimal threshold was determined separately for each

method and was defined as the threshold on the PR curve where precision is equal to

recall using a dataset of 20 COPDGene subjects (using both TLC and FRC scans) that
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were not included in the training or testing datasets. For each scan the average surface

distance (ASD) and standard deviation of surface distances (SDSD) was calculated.

6.4 Results

We compared FissureNet against three other fissure detection methods: Hessian-based [152],

DoS [157], and U-Net [119]. The Hessian and the DoS methods do not distinguish

between the right oblique and horizontal fissures. Therefore, only an aggregated right

fissure (RF) measure is made for the right lung. For comparison, the RF measure is

evaluated on FissureNet and U-Net by adding the ROF and RHF probabilities.

Fig. 6.3 compares PR curves for FissureNet and U-Net methods on 3706

subjects (TLC and FRC scans for each subject) from COPDGene and 20 lung cancer

subjects with 4DCT scans. PR-AUCs for FissureNet, U-Net, and Hessian are displayed

in Tables 6.2 and 6.3 for the COPDGene and lung cancer datasets, respectively.

Overall, PR-AUC for FissureNet, U-Net, and Hessian methods were 0.980, 0.963,

and 0.158, respectively, on the COPDGene dataset and 0.966, 0.937, and 0.182,

respectively, on the lung cancer dataset. All methods had similar performance on the

COPDGene and the lung cancer datasets and FissureNet performed best with regards

to PR-AUC. Table 6.4 shows PR-AUCs on the lung cancer dataset using a ground

truth which only indicates radiographically visible fissures. FissureNet and U-Net

performed slightly better using the visible-only ground truth, while Hessian performed

slightly worse. Table 6.5 shows PR-AUCs for FissureNet and DoS evaluated on a

subset of 15 subjects (30 scans). The post-processing in the DoS method greatly

improves the PR-AUC from 0.177 (DoS1) to 0.668 (DoS2), however, FissureNet
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consistently performed better than DoS2 without any post-processing with an overall

PR-AUC of 0.991. In Tables 6.2-6.5, only LOF and RF fissures are included in mean

calculation to avoid over-weighting right lung results.

Figure 6.3. Precision-Recall curves for FissureNet ( ) and U-Net ( ) evaluated
on the testing dataset of 3706 COPDGene subjects (TLC and FRC scans for each
subject) and 20 lung cancer subjects (4DCT).
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Table 6.2. PR-AUC for 3706 subject (7412 scan) testing
dataset from COPDGene

Phase Fissure
PR-AUC

Hessian U-Net FissureNet

TLC LOF 0.145 0.973 0.985
RF 0.216 0.959 0.982
ROF —– 0.967 0.987
RHF —– 0.891 0.939

FRC LOF 0.108 0.968 0.979
RF 0.165 0.952 0.975
ROF —– 0.964 0.983
RHF —– 0.878 0.919

Mean 0.158 0.963 0.980

Table 6.3. PR-AUC for 20 lung cancer subjects with
4DCT scans. Non-visible fissures were interpolated and
extrapolated to form complete boundaries between lobes

Fissure
PR-AUC

Hessian Unet FissureNet

LOF 0.171 0.950 0.972
RF 0.193 0.924 0.961
ROF —– 0.899 0.916
RHF —– 0.848 0.926

Mean 0.182 0.937 0.966

Table 6.4. PR-AUC for 20 lung cancer subjects with 4DCT
scans. Only visible fissures were marked in the ground truth

Fissure
PR-AUC

Hessian Unet FissureNet

LOF 0.113 0.978 0.992
RF 0.137 0.985 0.988
ROF —– 0.965 0.953
RHF —– 0.917 0.946

Mean 0.125 0.982 0.990
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Table 6.5. PR-AUC for 15 subject (30 scan) testing subset
from COPDGene

Phase Fissure
PR-AUC

DoS1 DoS2 FissureNet

TLC LOF 0.167 0.706 0.993
RF 0.155 0.652 0.992
ROF —– —– 0.995
RHF —– —– 0.968

FRC LOF 0.191 0.704 0.987
RF 0.196 0.610 0.990
ROF —– —– 0.994
RHF —– —– 0.967

Mean 0.177 0.668 0.991

Table 6.6. Average surface distance (ASD) and standard deviation
of surface distances (SDSD) averaged over 3706 subject COPDGene
testing dataset (TLC and FRC) and lung cancer testing dataset
(4DCT). Distances reported in mm

Dataset Fissure
ASD SDSD

U-Net FissureNet U-Net FissureNet

TLC LOF 3.75 0.65 10.56 2.14
ROF 4.83 0.57 12.78 2.06
RHF 7.23 2.39 13.64 5.49

FRC LOF 2.32 0.66 6.93 1.66
ROF 4.03 0.53 10.38 1.43
RHF 5.57 1.96 9.79 3.85

4DCT LOF 2.97 0.62 9.06 1.36
ROF 6.50 1.97 13.86 2.88
RHF 9.31 1.90 15.27 4.93
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Table 6.6 shows ASD and SDSD averaged over all subjects. On average, the

ASD for FissureNet was less than U-Net for all scan types and fissures. Fig. 6.4

shows a histogram of the differences in ASD between U-Net and FissureNet on a

subject-by-subject basis; 97% of the histogram area is to the right of the vertical line

corresponding to cases where FissureNet has a lower ASD compared to U-Net.

Figure 6.4. Histogram of differences in ASD between U-Net and FissureNet on a
subject-by-subject basis.

Statistical testing was performed to test for significant differences in performance

between methods with regards to evaluation metrics. Paired t-tests showed that

FissureNet had a significantly greater PR-AUC and a significantly lower ASD compared

to U-Net on both the COPDGene and lung cancer datasets (p < 0.001). Additionally,
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FissureNet had a significantly greater PR-AUC compared to Hessian on both the

COPDGene and lung cancer datasets (p < 0.001).

Representative fissure detection results are displayed in Fig. 6.5 for the COPDGene

dataset and Fig. 6.6 for the lung cancer dataset. These results show DoS2 and U-Net

have far fewer false positives compared to Hessian, however, FissureNet produces

the fewest false positives while maintaining high sensitivity. The difference in false

positive behavior between FissureNet and U-Net is further emphasized in Fig. 6.7,

where surface renderings are annotated in red to depict false positives. The only

post-processing performed to generate the renderings was thresholding at the optimal

PR-AUC thresholds.

6.5 Discussion

Existing fissure detection methods are limited to hand-crafted and local features.

These features typically suffer from low specificity as it is difficult to differentiate

fissures from the other structures in the lung without global context. Additionally, it

is difficult to design features that are robust against all fissure variations, especially for

global compared to local features. To overcome the challenge of designing robust and

discriminative features we use a deep learning approach to learn the feature detectors

from labeled training cases. The main challenges associated with training a ConvNet

to detect fissures in CT images are the size of the input images and the highly skewed

class distributions.

The majority of ConvNets used in medical imaging applications use 2D image

slices or use a sliding window approach with small image crops to overcome limitations
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(a) (b) (c) (d) (e) (f)

Figure 6.5. Representative results for four COPDGene subjects in rows one to
four. (a) CT sagittal slice, (b) ground truth, (c) Hessian, (d) DoS2, (e) U-Net, (f)
FissureNet. Top to bottom: GOLD1 FRC, GOLD3 TLC, GOLD3 FRC, GOLD4
TLC. DoS2 greatly reduces the number of false positives compared to Hessian,
however, for these cases it fails to detect the horizontal fissure (rows 1 and 3).
FissureNet and U-Net results are similar with high sensitivity and few false positives,
however, FissureNet has fewer false positives.
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(a) (b) (c) (d) (e)

Figure 6.6. Representative results for four lung cancer subjects in rows one to four.
(a) CT sagittal slice, (b) ground truth, (c) Hessian, (d) U-Net, (e) FissureNet. Row
4 has a dense pathology superior to the horizontal fissure that is falsely detected by
Hessian and U-Net, however, FissureNet correctly classifies this as non-fissure.
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(a) (b) (c) (d) (e) (f)

Figure 6.7. Surface renderings of FissureNet (a, c, e) and U-Net (b, d, f) results for six
COPDGene subjects (rows 1 and 2) and six lung cancer subjects (rows 3 and 4). True
positives and false positives are depicted in gray and red, respectively. Probability
output was thresholded at optimal threshold for each method as determined by PR
curve.
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in GPU memory. While this is a reasonable approach for some tasks, for fissure

segmentation it is not desirable. The 3D appearance of a fissure is important to

distinguish it from other structures that would otherwise appear similar on 2D slices.

Global information provides additional context which is especially important when

the fissure signal is weak, however, this information is not considered by patch-based

approaches.

Compared to other segmentation architectures, Seg3DNet is an asymmetrical

encoder-decoder network which uses less memory in order to accommodate a 3D

network, larger input images, and more network levels. This allows for global information

to be learned and results in higher specificity. By training separate Seg3DNets for the

left and right lungs, we were able to reduce the size of the input image by a factor of

two. This optimization does not degrade performance, as information from one lung

does not provide global information for fissure detection in the other lung.

To handle the class imbalance, we use a coarse-to-fine ConvNet cascade: the

first ConvNet learns the fissure ROI and the second ConvNet learns the precise fissure

location. In addition to mitigating the effect of class imbalance, the fissure ROI

classifier is more sensitive to weak and incomplete fissures. Since the second training

phase weights the voxel misclassification costs by the probability of being in the fissure

ROI, the contribution of costs from the large number of non-fissure voxels is limited.

Therefore, the class imbalance problem is mitigated while allowing for precise fissure

prediction. A similar, and more elegant, approach would be to train a single network

with two outputs: one for the fissure ROI and one for precise fissure prediction.
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However, current limitations on GPU memory do not allow for this.

Fully-connected layers are not used in Seg3DNet, making it a fully-convolutional

network (FCN) [125]. This greatly reduces the number of parameters and makes

the network less prone to overfitting; the proposed network has 3 million parameters

compared to the popular VGG-16 network which has 138 million parameters. Furthermore,

in a FCN the number of parameters is not dependent on the input image size, so the

network can be trained and deployed on images of different sizes. Our network was

trained on fixed-size image crops of 64x200x200 due to limited GPU memory, however,

in some cases the entire lung field does not fit in this crop. At test time there is more

memory available as mini-batches are not used and gradients do not need to be stored

for backpropagation. As a result, at test time much larger inputs can be used. In

fact, the entire lung region, regardless of size, can be used as input and inference

can be done in one forward pass per image. This is extremely efficient compared

to patchwise approaches. In addition, Seg3DNet can accommodate different input

image sizes, avoiding aggressive rescaling and interpolation that might degrade the

fissure signal.

This is the first study to evaluate a fissure detection method on a dataset

of this size and diversity: 3706 COPDGene subjects with TLC and FRC scans and

20 lung cancer subjects with 4DCT scans. The COPDGene data used for training

and evaluation came from 21 different institutions. Different scanner makes and

models were used, as well as different reconstruction algorithms. The diversity

of the evaluation set was further enriched with a lung cancer dataset of 4DCT
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scans. These scans were acquired at a lower dose during breathing, resulting in

poorer image quality, motion blurring, and/or artifacts which were not present in the

training dataset. Robustness to such diversity is generally a challenge when designing

rule-based algorithms for image segmentation: it can be difficult to achieve similar

performance across different scanning protocols and diseases.

Fissure detection performance was evaluated on four methods: Hessian-based,

DoS, a deep learning approach using the U-Net architecture, and the proposed FissureNet.

FissureNet and U-Net both greatly outperformed the Hessian and DoS methods on

all datasets. Hessian and DoS methods were not able to detect weak fissures and

produced many false positives at blood vessels and diseased regions. FissureNet

consistently outperformed U-Net; while both methods demonstrated high sensitivity

for fissure detection, FissureNet predicted fewer false positives. This can be attributed

to the larger input patches and coarse-to-fine cascade, allowing the network to use

more global context to differentiate true fissures from disease that resembles fissures.

On the COPDGene evaluation dataset, all methods performed better on TLC

scans compared to FRC scans in terms of PR-AUC. However, in the COPDGene trial

the TLC scans were acquired at a higher dose and thus the image quality was better,

so better performance was expected. In the future, comparing images of the lung

at different inspiration levels acquired using the same dose would help determine

which inspiration level is best for fissure detection. Although the performance on

FRC images was worse, the FissureNet results are nonetheless impressive for lower

dose scans. This demonstrates the ability of FissureNet to generalize across different
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scanning protocols. The COPDGene dataset consisted of subjects with a wide range

of disease severity, encompassing all GOLD stages. It is more challenging to detect

fissures in heavily diseased cases as alterations in the underlying tissue can resemble

the fissure and/or result in abnormal tissue appearance. Performance of FissureNet

was robust to these challenges.

Training a multi-class network for the right lung results in the ability to

distinguish between oblique and horizontal fissures. This is the first fissure detection

method to make this distinction. Since the ultimate goal is to divide the lungs into

lobes, unique predictions for different fissures facilitates straightforward post-processing.

A limitation of training FissureNet using a ground truth containing only oblique

and horizontal fissures is an inability to detect accessory fissures. While accessory

fissures have exhibit similar local appearance compared to the major fissures, the

proposed FissureNet learns high level information encoded in the particular shapes

and orientations of the oblique and horizontal fissures. However, introducing an

accessory fissure class and providing additional annotation in the training data could

extend the network’s capability.

Detection of the right horizontal fissure was consistently worse than the oblique

fissures for the COPDGene dataset. The orientation of the horizontal fissure is

often parallel with the axial imaging plane, potentially obscuring the fissure in CT

images. It is not uncommon for horizontal fissures to be radiographically incomplete

or missing, hindering identification even by human analysts. Interestingly, on the

4DCT dataset the ROF has a higher ASD compared to the RF.
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The COPDGene ground truth fissures used for evaluation have several limitations.

The fissures were automatically extracted from lobar segmentations resulting in complete

fissure boundaries for all cases even those with radiographically incomplete or missing

fissures. In such cases, the extrapolated or interpolated fissure location is highly

subjective and evaluating the performance of any automated method using such a

ground truth is limited in these regions. Furthermore, the ground truth fissures in

the COPDGene evaluation dataset were generated using the same method as the

training dataset (Apollo software followed by manual correction). This introduces

a bias for learning-based methods to identify complete fissures in unseen subjects

regardless of actual fissure integrity. An additional possible bias may be attributed

to the FissureNet and U-Net methods being trained on the COPDGene dataset, while

the Hessian and DoS methods were developed on an independent dataset.

To address these limitations, evaluation was performed on a dataset of lung

cancer subjects with 4DCT scans. The ground truth fissure segmentations for this

dataset were generated manually. Additionally, both complete and visible-only fissures

were annotated. All fissure detection methods performed worse on the 4DCT dataset

compared to the COPDGene dataset. The 4DCT scans use a lower dose and commonly

have motion artifacts and blurring, resulting in decreased fissure visibility. All methods

performed better using the visible-only fissure ground truth.

A drawback of our method, and of deep learning in general, is the requirement

of a large training dataset with ground truth segmentations. Manual segmentation

is tedious, time-consuming, and typically performed by a medical imaging expert
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analyst. Additionally, a high-end GPU card was required for training the network

and such a card may not be available on a standard workstation. However, once the

network is trained, it can be deployed on a low-end consumer GPU. Although there

is a large overhead in training time (48 hours), processing time is only 20 seconds per

image.

Tajbakhsh et al. [138] analyzed how well networks trained on natural images

transferred to medical images and found pretraining resulted in improved or equal

performance compared to random initialization. No transfer learning was used in this

study due to limited availability of pretrained weights for 3D architectures. This is

an area for potential further development.

The proposed method is designed exclusively for fissure detection and does

not provide a complete lobar segmentation. However, the high specificity of our

method facilitates lobar segmentation with simple post-processing (i.e. thresholding,

morphological operations, and connected component analysis). For challenging cases

with incomplete fissures, a more sophisticated surface-fitting technique might be used

for post-processing. For example, optimal surface finding graph search could be used

to divide the lung into lobes, defining the graph costs by fissure probabilities.

6.6 Conclusion

We have proposed a method for automatic detection of pulmonary fissures in

CT images using a deep learning framework. We presented a novel coarse-to-fine

cascade of ConvNets called FissureNet, and a novel 3D segmentation architecture

called Seg3DNet. Fissure detection was evaluated with two rule-based methods
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(Hessian and DoS) and two learning-based methods (FissureNet and U-Net). The

learning-based methods outperformed the rule-based methods. Furthermore, FissureNet

outperformed U-Net as it was capable of learning larger-scale global features. FissureNet

achieves high sensitivity for fissure detection while producing very few false positives,

allowing for straightforward post-processing to obtain a final lobar segmentation. The

results show that FissureNet is robust to different CT scanners, scanning protocols

(low-dose and normal-dose), inspiration levels (TLC and FRC), imaging modalities

(breath-hold vs. 4DCT), and severities of pulmonary disease.
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CHAPTER 7

PULMONARY LOBE SEGMENTATION

Submitted as: SE Gerard and JM Reinhardt: Pulmonary Lobe

Segmentation Using a Sequence of Convolutional Neural Networks

for Marginal Learning. International Symposium on Biomedical

Imaging, 2019.

Segmentation of the pulmonary lobes in computed tomography images is an

important precursor for characterizing and quantifying disease patterns, regional

functional analysis, and determining treatment interventions. With the increasing

resolution and quantity of scans produced in the clinic automatic and reliable lobar

segmentation methods are essential for efficient workflows. In this work, a deep

learning framework is proposed that utilizes convolutional neural networks for segmentation

of fissures and lobes in computed tomography images. A novel pipeline is proposed

that consists of a series of 3D convolutional neural networks to marginally learn

the lobe segmentation. The method was evaluated extensively on a dataset of 1076

CT images from the COPDGene clinical trial, consisting of scans acquired multiple

institutions using various scanners. Overall the method achieved median Dice coefficient

of 0.993 and a median average symmetric surface distance of 0.138 mm across all lobes.

The results show the method is robust to different inspiration levels, pathologies, and

image quality.

7.1 Introduction

The human lungs are anatomically divided into five compartments called lobes.

Infolding of the outer pleural membrane forms the boundary between adjacent lobes,
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called fissures. The left lung has two lobes separated by the left oblique fissure.

The right lung has three lobes separated by the right oblique fissure and the right

horizontal fissure. In cross sections of computed tomography (CT) images the fissures

appear as thin curvilinear surfaces that are slightly brighter in intensity than the

surrounding lung parenchyma. The lobes are supplied by separate airways and

blood vessels and are therefore generally functionally independent. Furthermore,

diseases are often constrained by the fissure boundary and do not spread across lobes.

Identification of the lobar regions on CT images is an important precursor that allows

for quantitative characterization of disease and regional functional analysis.

The increasing resolution and quantity of scans have placed a demand on

developing automatic and robust lobar segmentation methods. Assuming a lung

segmentation is available, accurate identification of the fissure could presumably

provide a lobar segmentation. However, it is generally not this straightforward as

fissures are often radiographically incomplete or missing and do not completely divide

the lung into lobes. Additionally, pathology such as fibrosis or emphysema can locally

resemble fissures or obscure the shape and appearance of the fissure. Current fissure

detector methods are sensitive to these factors and do not produce high quality fissure

segmentations to allow straightforward division of lungs to lobes.

To overcome these challenges, many works have proposed sophisticated pipelines

consisting of a sequence of modules to achieve lobe segmentation: lung segmentation,

fissure detection, removal of falsely detected fissures, and surface interpolation and/or

extrapolation [161, 146, 74, 163, 141, 75, 114]. Many of these methods are dependent
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on local image appearance filters which can be sensitive to weak fissures and prone

to false positives due to the limited locality of the filters. To mitigate this, several

works incorporate anatomical priors in the form of blood and airway vasculature

maps [141, 146, 75] or atlas-based initialization [161, 146]. Doel et al. [30] present an

extensive review of pulmonary lobar segmentation methods.

Deep learning using convolutional neural networks (ConvNets) have recently

been successful across many applications in computer vision, including medical imaging.

However, few works have attempted to address pulmonary lobe segmentation. A

progressive holistically nested neural networks followed by a random walker post-processing

step for lobe segmentation was proposed in [46]. A limitation of this method is

that training was performed on 2D slices, removing global contextual cues and 3D

smoothness. In [150], lobe segmentation was directly learned on downsampled CT

images using a 3D DenseNet.

For accurate lobe segmentation, it is important to learn both global and local

features. Local features at high-resolution are important for detecting the exact fissure

location which forms the lobar boundary. Global features are important for learning

the the lungs are divided into five connected components and learning the relative

position of lung tissue with respect to the fissure. Global features are especially

important when the fissure is radiographically weak or incomplete, as information

from the vasculature, airways, and lobe shape can provide can guide the segmentation.

In this work, a deep learning approach for lobe segmentation is proposed which

utilizes a sequence of 3D ConvNet models to allow both local and global features to
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be learned. The lobe segmentation is incrementally learned by training the networks

to learn the following sequence of segmentation tasks: fissure region of interest (ROI),

fissure, low-resolution lobe, and finally high-resolution lobe. Knowledge is propagated

between networks in a feed-forward manner by using the output of a network as an

input to the next network(s) in the series.

7.2 Methods

Given a CT image I and a lung segmentation M , the proposed method assigns

each voxel a label from the discrete class set Y : the left lower lobe (LLL), left upper

lobe (LUL), right lower lobe (RLL), right middle lobe (RML), right upper lobe (RUL),

or non-lung (BKG). The learned model pipeline is illustrated in Figure 7.1. Separate

models are trained for the left lung and the right lung and the predictions are merged

in a post-processing step.

7.2.1 Image Datasets

The dataset of CT images used in this study consists of scans acquired from

the COPDGene study, a large-scale multi-center clinical trial studying genetic and

imaging biomarkers of chronic obstructive pulmonary disease (COPD) [115]. For

each subject a pair of 3D breath-hold CT scans are acquired, one scan at total lung

capacity (TLC) and one scan at functional residual volume (FRC). The TLC scans

were acquired with a dose of 200 mAs and the FRC scans were acquired with a lower

dose of 50 mAs.

A subset of 1601 subjects was used for training the fissure and lobe segmentation

models, and a disjoint subset of 576 subjects was used for evaluating the model.
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Figure 7.1. Lobe segmentation pipeline.
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For each subject, both TLC and FRC scans were used for training and evaluation.

Ground truth lung and lobe segmentations were obtained using a commercial software

package (Apollo, VIDA Diagnostics, Coralville, IA). The automatic segmentations

were manually inspected and edited if necessary. Ground truth fissure segmentations

were automatically extracted from the lobar segmentations by identifying adjacent

voxels with different lobe labels.

7.2.2 Preprocessing

The proposed method assumes each CT image has a corresponding lung mask

which labels every voxel as left lung, right lung, or background. For consistency, all

CT images and lung masks are resampled to have isotropic voxels with size 1 mm3.

To reduce the image size, crops with dimensions 256× 256× 256 voxels are extracted

at two locations, one centered around the left lung and one centered around the right

lung. The crops extracted from the CT image and lung mask are be denoted I and

M , respectively. The lung mask is used to mask out the background of the CT image,

i.e., for every voxel that is labeled background in M the corresponding voxel in I is

set to -1024. The masked image, I×M , serves as the input to all networks presented

in the following sections.

7.2.3 Seg3DNet

The lobe segmentation pipeline consists of a sequence of four ConvNets; each

of these uses the Seg3DNet architecture [49]. Seg3DNet is a 3D, fully-convolutional

network (FCN) [125] with an encoder and decoder module; see Figure 7.2. The

encoder is similar to a 3D extension of U-net [119], however, the decoder module is
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modified to consume less GPU memory. The input and output images of Seg3DNet

both have three spatial dimensions with the same size. Additionally, the input and

output images have a channel dimension which can be different sizes; the number of

input channels C corresponds to the number of input feature maps and the number

of output channels |Y | corresponds to the number of classes.

Figure 7.2. Seg3DNet architecture. The number of channels for each image
representation is denoted in the lower left corner of each cube. For the encoder
module, the number of channels for all image representations in level li is Ni = 2i+5

for i = 0, .., L. The relative spatial size of the image representations are drawn to scale.
At each level the spatial dimensions of the image representation gets downsampled
by a factor of two.
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7.2.4 FissureNet

The first network and the second network predict a fissure ROI PFROI and a

precise fissure PF , respectively. This is the same as the FissureNet method, see [49] for

detailed description. Briefly, the first network predicts a fissure ROI, where all voxels

within 5 mm of the fissure are defined as the fissure ROI. The second network predicts

the precise fissure location, with the prediction weighted by the fissure ROI prediction.

This alleviates the class imbalance problem between fissure and non-fissure voxels.

FissureNet predicts a vector-valued probability image where each voxel represents a

probability distribution over the different major fissures (left oblique, right oblique,

and right horizontal) and non-fissure. The probability of each fissure is accumulated

to produce a single channel fissureness PF image that is utilized in the lobe networks.

7.2.5 Coarse Lobe Network

The coarse lobe network learns a low-resolution lobe segmentation. This

network is trained with aggressively downsampled images, allowing the network to

be trained with images of the entire lung field. This makes it possible to learn global

features and contextual information. The masked CT image I×M and the fissureness

image PF , and the target lobe segmentation L are downsampled to 64 × 64 × 64,

a downsampling factor of four along each dimension. Linear interpolation is used

for downsampling I × M and PF and nearest neighbor interpolation is used for

downsampling L. Prior to downsampling, Gaussian smoothing is performed. The

input to the network is the downsampled I ×M and PF images concatenated along

the channel dimension. The output of the network is a vector-valued image where
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each voxel represents the probability distribution over each of the lobes and the

background. This output is upsampled to the 256 × 256 × 256 voxel resolution to

produce PLC , which is input to the final lobe network.

7.2.6 Lobe Network

The final network in the pipeline learns a high resolution lobe segmentation.

The input to this network is the 1 mm resolution I × M , PF , and PLC images

concatenated along the channel dimension. At this resolution, the network cannot

be trained on the entire 256 × 256 × 256 image due to GPU memory constraints.

Sagittal slabs with size 64×256×256 voxels are extracted at random locations along

the left-right axis, and these crops are used for training. The output of the refine

lobe network, PL, is a vector-valued probability image, i.e., each voxel is a 6-element

vector representing the probability of the voxel belonging to each of the lobes and

background.

7.2.7 Post-processing

A simple post-processing is used to obtain a final discrete segmentation from

PL. First, all voxels with a high confidence prediction for one lobe are assigned to that

lobe, using a high confidence prediction threshold of pi > 0.70. A distance transform

is applied to each of the resulting high confidence lobe regions and the remaining low

confidence voxels are assigned to the lobe to which they are nearest.

7.2.8 Implementation

The lobe segmentation pipeline is implemented with open source frameworks

Theano [140] and Lasagne [28]. The networks are trained using NVIDIA GPU cards:
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P100 with 16 GB RAM for low resolution networks and P40 with 24 GB RAM for

the high-resolution networks. Adam optimization [67] is used for training with an

initial learning rate of 5−4 and Xavier normal initialization [50] is used.

7.3 Results

The performance of the proposed method was evaluated on 1076 scans of

subjects with COPD. Figure 7.3 qualitatively compares the automated lobe segmentation

results to the manual segmentation. Quantitative comparison was performed using

the average symmetric surface distance and the Dice coefficient to measure volume

overlap distance between surfaces, respectively. Overall, the proposed method achieved

a median Dice coefficient of 0.993 and a median ASSD of 0.138 mm. Table 7.1 shows

the a summary of the medians and Figure 7.5 shows the quartiles of the ASSD and

DICE distributions stratified by lobe and lung volume, Figure 7.4 displays histograms

of ASSD and DICE for all evaluation cases. The results show TLC performance was

consistently better than FRC performance. Furthermore, the right lobes performed

slightly worse compared to the left lobes. Figure 7.6 shows the method was robust to

different levels of disease severity as assessed by GOLD level.

7.4 Discussion

The proposed method was evaluated on scans acquired at TLC and FRC.

Performance on FRC images was slightly worse compared to TLC images, however,

the performance on FRC images was still very high. In general, it is more difficult

to segment lobes in scans acquired at lower lung volumes, such as FRC and residual

volume (RV), compare to TLC. At lower lung volumes there is less air in the lungs,
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(a) (b) (c) (d) (e) (f)

Figure 7.3. Representative results for four subjects in rows one to four, with TLC
scans in rows 1-2 and FRC scans in rows 3-4. Left lungs in columns (a)-(c) and
right lungs in columns (d)-(f). (a) and (d) CT slice, (b) and (e) ground truth lobe
segmentation, (c) and (f) predicted lobe segmentaiton.

Table 7.1. Median values across all evaluation scans,
stratified by lung volume and lobe. ASSD units are in mm

Volume Lobe Dice ASSD

TLC LLL 0.997 0.074
LUL 0.997 0.071
RLL 0.996 0.093
RML 0.983 0.302
RUL 0.993 0.185

FRC LLL 0.994 0.100
LUL 0.995 0.089
RLL 0.993 0.112
RML 0.975 0.371
RUL 0.989 0.227
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Figure 7.4. Histogram of ASSD (A) and Dice (B) results stratified by TLC
scans (green) and FRC scans (blue). Vertical lines represent medians of respective
distributions.

Figure 7.5. ASSD (A) and Dice (B) results stratified by lobe and lung volume: TLC
(green) vs FRC (blue).
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Figure 7.6. ASSD (A) and Dice (B) results stratified by GOLD level and lung volume:
TLC (green) vs FRC (blue).
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resulting in lower contrast between the fissure and lung parenchyma. The FRC scans

in this study were acquired at a lower dose compared to the TLC scans, resulting

in poorer image quality for the FRC scans. This is another contributing factor for

the drop in performance. However, the absolute performance metrics were still good,

demonstrating the proposed method is robust challenges imposed by low imaging dose

and small lung volumes.

Segmentation performance on the left lobes was consistently better than the

right lobes, with RML and RUL having the worst performance. This is consistent with

previous works, and can be explained by poor visibility of the right horizontal fissure,

which separates the parenchyma above the RLL into RML and RUL. Nonetheless,

the proposed method was robust to poor visibility of the horizontal fissure and was

able to reliably segment the RML and RUL.

The evaluation dataset consisted of subjects from all GOLD stages. More

diseased subjects are generally more difficult to segment, pulmonary disease can

locally resemble the fissure or distort the true fissure appearance and shape. Although

there was a small decrease in performance with increasing GOLD level, the proposed

method still showed high performance for all GOLD stages.

Automated runtime for the proposed method was less than three minutes when

run on a NVIDIA P100 GPU card, this includes the inference times for eight networks.

Overhead of training all networks was approximately 96 hours.
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7.5 Conclusion

A novel pipeline was proposed which uses a series of interconnected ConvNets

to incrementally learn lobe segmentation in CT images. The method achieved high

performance on a dataset of 1076 CT scans, one of the most extensive evaluations

that has been performed for lobar segmentation. The method was robust to different

inspiration levels, poor image quality, and disease severities. This allows for efficient

and reliable regional analysis on large-scale datasets both in the clinic and in research

settings.
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CHAPTER 8

DISCUSSION AND CONCLUSION

Deep learning using convolutional neural networks (ConvNets) are successful

at performing many tasks in computer vision, including image classification, segmentation,

object recognition, and captioning. Since the breakthrough of AlexNet [73] in the

2012 ImageNet competition [27], there has been an explosion of research related to

deep learning and ConvNets. The majority of this research is applied to natural

2-dimensional (2D) images due to the availability of large public datasets such as

ImageNet. In recent years, the medical imaging community has taken notice and

applied this powerful technique to medical image analysis [53, 82, 126, 68].

In this work, a pipeline for pulmonary segmentation was proposed that uses a

series of inter-connected 3D ConvNets. The pipeline sequentially performs segmentation

of lungs, fissures, and lobes in computed tomography (CT) images. A multi-resolution

ConvNet model was proposed, which is capable of learning from large volumetric

images without loss of global context and spatial smoothness. Similar multi-resolution

regimes have shown to be beneficial in image processing applications including statistical

shape models [20] and image registration [18, 124]. In this work, the multi-resolution

model consisted of two resolution levels, however, this could be extended to more

levels. First, a low-resolution model is learned by training a ConvNet on aggressively

downsampled images. At low resolutions the network can be trained on entire images;

this gives the network the capacity to learn global patterns. A high-resolution
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model is subsequently learned which uses both the high-resolution CT images and

the low-resolution model prediction. This allows for precise edge information to be

learned and global information to be incorporated.

The proposed pipeline was evaluated extensively to ensure robustness. Multiple

datasets were used for evaluation, these datasets incorporate a variety of imaging

protocols, scanners, lung volumes, imaging modalities, pathologies, and species. The

datasets included scans of human subjects with chronic obstructive pulmonary disorder

(COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. In addition to the

human scans, an animal dataset was utilized which consisted of three animal species

with models of acute respiratory disorder (ARDS). The human scans included multiple

lung volumes: total lung capacity (TLC), functional residual volume (FRC), residual

volume (RV), and intermediate volumes from 4DCT scans. Different imaging doses

were used resulting in different image qualities. The modules in the pipeline proved to

be robust to these challenges, demonstrating its utility in high-throughput processing.

In medical imaging applications, the majority of methods train ConvNets using

a subset of the image, e.g., 2D slices or small 3D patches cropped from the image.

While these methods show promising results, training on small subsets of the image

greatly reduces the extent of global context that can be learned by the network. For

segmentation of pulmonary structures, global context from the surrounding anatomy

is important for discrimination of different structures. For example. in injured lungs

the local intensity and texture features can be indistinguishable from the surround soft

tissue. For accurate inclusion of injury in lung segmentation, the rib cage provides
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perhaps the most valuable information for approximating the location of the lung

boundary. The multi-resolution model proposed in this work, allows for learning

global features without sacrificing high-resolution information.

The proposed pipeline was developed on 3D images; for processing 4DCT

images each 3D phases is independently processed. Ideally, the temporal patterns in

the datasets would be exploited and temporal consistency would be ensured through

4D processing. In future work, recurrent neural networks (RNNs) could be explored;

RNNs are capable of learning temporal patterns in sequential data. This would

require training data with all phases segmented which is currently not available for

these datasets. Alternatively, a hybrid algorithm using ConvNets with optimal surface

finding [79] graph optimization would allow temporal constraints to be incorporated.

This would be less computationally efficient compared to a purely ConvNet-based

pipeline. Furthermore, defining temporal constraints for the graph optimization is

challenging. There are large variations in lung motion regionally, between subjects,

and even within the same subject. While 4D processing is ideal for 4DCT images,

applying the proposed pipeline to each phase independently produced visually temporal

consistent results and it may be possible that 4D processing will add complexity

without significant improvements.

Data augmentation is widely used to artificially generate more training data.

This technique involves applying simple affine transformations to images, e.g., rotations,

translations, and scaling, as well as intensity transformations. This type of data

augmentation is appropriate for natural images, however, it is not realistic for some
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types of medical images. CT images have a fixed orientation and standardized

intensity units. Applying such transformations introduces variations in the data

that do not naturally exist. The natural variations in anatomical structures are

informative features that can be learned by the network. This is especially true for

global feature learning or the low-resolution model. For this reason, we did not use

data augmentation in this work.

A drawback of deep learning is the dependency on a large dataset of annotated

images. The performance of deep learning based methods lies not only in the architecture

and algorithm developed, but also in the diversity of the dataset. Therefore, fair

comparison of novel algorithms should be done on a common dataset to eliminate

the contribution of the data itself. While this is done in the computer vision field on

the ImageNet dataset, much of the development and evaluation in medical imaging

domains uses independent datasets.

A common question when apply deep learning to a new application is how

much training data is needed. Unfortunately, there is not a universal answer to this

question; the amount of data required is dependent on the specific problem that is

being explored. Some problems are more complex and require larger models and thus

more training data. Another factor to consider is the variability in the training data.

If more variations exist, more training data is required to represent all the variations

in the learned model. Several works have explored methods for estimating sample size

for required for classification performance [39, 90]. This technique involves creating

a learning curve using a small dataset and fitting an inverse power law. While there
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is no universal answer to the amount of training data required for deep learning, a

commonality for all applications of deep learning has been the more training data

available, the better the performance.

Another drawback of deep learning is the computational overhead in training.

For large 3D datasets, training a single model can take several days. Proper hyperparameter

optimization involves retraining the same model many times until the best combination

of hyperparamters is found. Furthermore, a high-end GPU card with sufficient RAM

is required for training. While training ConvNets is computationally expensive and

time-consuming, after training is completed these models are very computationally

efficient and can even be executed on a CPU.

The “black-box” nature of deep learning deters its use in medical applications.

Rule-based methods or feature engineering may be favored since the model can be

explained and if something fails it can be understood. For medical image segmentation,

the results can be reviewed and one does not need to understand what the model

learned. Medical image segmentation is a time-consuming and tedious task, but can

be done by human analyst, making it an ideal application for deep learning.

The scope of applications that could benefit from multi-resolution models

exceeds image segmentation, which is just an initial step for image analysis. For

example, detecting image biomarkers for various pulmonary diseases is a large area

of research. Multi-scale processing for learning biomarkers provides more context

for learning compared to 2D slices. Furthermore, extracting a subset of 2D slices

could omit the pathological region altogether. Another application of multi-resolution
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ConvNets is image registration. Conventional image registration algorithms use

multi-resolution pyramids, however, this has not been explored in deep learning based

image registration methods.

In this dissertation, a pipeline was developed for segmentation of pulmonary

structures in CT images. The pipeline consists of modules for segmentation of

lungs, fissures, and lobes. Multi-scale ConvNets were proposed to enable learning

features of multiple scale range in large volumetric images. Multi-scale processing is

similar to the way human image analyst read medical images; first the entire lung

is viewed and subsequently abnormal regions are viewed more closely. The proposed

pipeline was extensively evaluated on multiple datasets to ensure robustness. The high

performance and computational efficiency of the pipeline is a promising step towards

high-throughput medical image analysis in clinical and research settings. CT images

provide a rich source of information regarding pulmonary diseases. Unfortunately,

much of this information not fully utilized due to the number of slices in volumetric

images and the high volume of scans produced. Multi-scale ConvNets have great

potential of providing an extra pair of eyes to extract and understand information in

medical images.
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APPENDIX A

4D LUNG SEGMENTATION

Published as: SG Yeary, GE Christensen, JE Bayouth, S Bodduluri,

Y Pan, J Guo, K Du, JH Song, B Zhao, I Oguz, JM Reinhardt:

4D Lung CT Segmentation for Radiation Therapy Applications.

ICART: Imaging and Computer Assistance in Radiation Therapy,

2015.

Radiation therapy protocols for lung cancer treatment planning commonly use

a 3D CT image to delineate critical regions of interest and a 4D respiratory-gated

CT to track tumor respiratory motion. 4D CT data sets contain a great deal of

information and can be analyzed to obtain quantitative data on respiratory system

dynamics, mechanics, and function. We describe a method that transfers segmentation

contours from the 3D planning CT to the entire 4D data set, even though the lung

changes size and shape during image acquisition due to respiration. Our proposed

method uses deformable image registration to align all phases of the 4D CT into the

coordinate system of the 3D planning CT. A graph optimization algorithm is used to

segment the lung boundaries of the aligned phases of the 4D data set. The algorithm

is initialized with the 3D segmentation of the planning CT. The segmentations of the

individual phases in the planning CT coordinate system are then transformed back

into each of the original phase coordinate systems providing 3D segmented volumes

at each phase of the 4D CT. We tested the method on six data sets from subjects

about to undergo radiation therapy for lung cancer. For each subject a 3D planning

CT was segmented as part of the treatment planning process. This planning CT was
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used to segment the 4D CT at ten phase points across the respiratory cycle. The

results of our method were compared against manual segmentations of four phases

giving an average surface distance of 0.417 mm and average Dice coefficient of 0.983.

The 4D segmentations appear to be more consistent across phases than the manual

segmentations, especially near the mediastinum. The results show that this method

can provide accurate 4D segmentations from a single segmented 3D CT image.

A.1 Introduction

Respiratory-gated 4D CT imaging is used in radiation therapy planning for

lung cancer treatment to measure tumor position at different points in the respiratory

cycle. These data sets can be further analyzed to obtain quantitative measurements of

lung dynamics [155], lung mechanics [3], and regional lung ventilation [31]. Accurate

lung segmentation of the constituent 3D volumes of a 4D data set is required before

quantitative analysis can be performed.

An initial 3D CT scan (referred to here as the “planning” CT) is conducted

on all patients that undergo a 4D CT scan. The planning scan is performed in

breath-hold and typically provides higher signal-to-noise and superior spatial resolution

than a 4D CT acquisition. As a result, the planning CT image provides a high quality

image of the lung anatomy and — due to acquisition during a single breath hold —

has fewer motion artifacts than a 4D CT data set. The planning CT is commonly used

for radiation therapy planning and includes lung and tumor segmentations generated

by an image analyst.

Several different approaches for lung tissue segmentation in 3D CT images have
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been proposed, including optimal thresholding [60], adaptive border tracking [111],

graph search algorithms [61], and segmentation-by-registration with the use of a

lung atlas [145]. These algorithms vary in segmentation accuracy, computational

complexity, and robustness to abnormalities and disease, but it is unlikely any 3D

algorithm could accurately and consistently segment all volumes of a 4D data set

independently. It seems likely that a direct 4D segmentation may give better results

than 3D volume-by-volume segmentation as all of the available image information is

used and temporal coherence across respiratory phases can be ensured. Additionally,

since 4D CT data sets typically have lower image quality and more motion artifacts

than the typical planning CT, conventional segmentation algorithms may fail or

perform poorly when applied to the individual 3D volumes of the 4D CT.

Lung segmentation in a 4D CT data set can be viewed as a multiple surface

segmentation problem, where prior known interactions between surfaces can be used

to improve segmentation robustness. Optimal surface finding is a graph search

method that has been used in many applications to segment multiple surfaces in

n-D medical images [79]. In [97], optimal surface finding is used to segment multiple

objects and surfaces in the brain. In [153] and [137], an active shape model is combined

with optimal surface finding to simultaneously segment multiple lung volumes. In

this work, we propose a similar method for lung segmentation in 4D CT data sets

consisting of ten volumes imaged at different phases during the breathing cycle.

Our 4D segmentation algorithm is based on a combination of deformable image

registration and 4D optimal surface finding. First, image registration is used to align
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Figure A.1. Processing flowchart. The process starts with the planning CT
segmentation and produces N segmented 3D phase volumes.

all volumes of the 4D data set to the coordinates of the planning CT so that the

planning CT segmentation can be used as a shape prior for all 4D CT lung volumes.

A 4D geometric graph is constructed using shape priors and the optimal surface is

found using an efficient maximum flow algorithm.

A.2 Methods

Our proposed 4D segmentation method consists of two stages: image registration

and optimal surface finding. The processing pipeline is shown in Figure A.1. We

assume that the 4D CT consists of N individual 3D phase volumes sampled across the

respiratory cycle. We use the notation 20%IN to refer to the 3D image reconstructed

at 20% of tidal lung volume during inspiration, and 80%EX to refer to the 3D image

reconstructed at 80% tidal lung volume during expiration.
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A.2.1 Registration

In the first stage, each 3D volume of the 4D data set is roughly aligned to

the planning CT volume using deformable image registration. Our method does not

require an accurate registration, so a low resolution registration framework can be

used to reduce computation time. In this work, we used the Elastix image registration

software [69] to perform the alignment of the planning CT to each of the 3D volumes.

A b-spline transform was used with a grid spacing of 20 mm. Normalized correlation

was used for the similarity metric and a gradient descent optimization algorithm was

used with a maximum of 1000 iterations. Note that it is possible to perform all

registrations simultaneously since each planning CT to 3D phase volume registration

is performed independently. Thus, performing the registrations in parallel can reduce

the overall computation time.

After performing the image registration, we obtain a set of deformed 3D images

in the same coordinate space as the planning CT image, allowing the existing planning

CT segmentation to be used as a subject specific shape prior for the next stage.

A.2.2 Optimal Surface Finding

Optimal surface finding is a graph search framework used for simultaneous

segmentation of multiple interacting surfaces in images [97]. The lungs at each phase

image are treated as surfaces and the interactions between different phases represent

temporal constraints. A shape prior similar to the true surface is used to initialize

the graph search space. Graph G(V,E) consisting of node set V and edge set E

is constructed in a region around the shape prior. In our work, the planning CT
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segmentation is utilized as the shape prior for all phases. Since the same shape prior

was used for all phases, all sub-graphs Gt had the same geometric structure in space.

This greatly simplified the 4D graph construction.

For multiple surface segmentation the following graph construction is done for

each surface, using similar graph construction parameters to those used in [137]. First,

the marching cubes algorithm is used to transform the planning CT segmentation into

a mesh representation with approximately 10,000 vertices. A search profile, or graph

column Vi, is constructed at each mesh vertex and nodes vi,j are sampled at equal

distances along the profile. For the experiments presented in this paper, the graph

column length was 60 nodes sampled at a distance of 0.35 mm. The search profiles

were defined using the electric field lines generated by treating each mesh vertex as a

charged point source as described in [160].

Graph edges are introduced to define feasible surfaces as those which maintain

the topology of the shape prior and have a certain degree of surface smoothness.

This is achieved by introducing intracolumn edges that force the optimal surface to

intersect each graph column Vi at exactly one node vi,j and intercolumn edges that

restrict the surface height from changing more than ∆ nodes between neighboring

columns. The intracolumn edges < vi,j, vi,j−1 > were introduced within each column

of the graph and the intercolumn edges < vi,j, vk,j−∆ > were introduced between all

neighboring columns Vi and Vk. For experiments used in this paper, we used ∆ = 12

nodes. Each node vεV was assigned a cost inversely proportional to the likelihood

the surface contains vi,j. The gradient magnitude of the deformed phase images was
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used as the cost function in this work. The cost of a feasible surface is the summation

of all node costs on the surface. The optimal surface corresponds to the surface with

the minimum cost among all feasible surfaces.

Interactions between surfaces were enforced by introducing temporal edges

< vti,j, v
t+1
i,j−δ > between corresponding columns of the surfaces. In our 4D lung

segmentation, the deformed lung of each image phase t = 1 . . . N was treated as

a surface and the temporal constraint δ enforced surface consistency between phases.

Here we used δ = 20 nodes.

A maximum flow algorithm was used to find the globally optimal solution of

the cost function as described in [11]. This resulted in N surfaces in the deformed

image space. The surfaces were transformed back to the coordinates of each original

3D phase volume using the transformations obtained from the registration.

A.2.3 Data Sets and Experimental Setup

4D CT data sets and a planning CT image from six lung cancer subjects

about to undergo radiation therapy were used for this study. All data were gathered

under a protocol approved by the University of Iowa Institutional Review Board (IRB

200905703). Each 4D CT contained ten 3D volumes retrospectively reconstructed

in 20% steps from inspiration to exhalation. All images were resampled to obtain

1×1×1 mm3 voxels. Ground truth segmentations were generated for four respiratory

phases (0%EX, 40%IN, 100%IN, 60%EX) by a trained image analyst (Y.P.) using the

AnalyzeTM software package. The same image analyst segmented the planning CT

image for each subject to provide initial shape priors.
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Table A.1. Dice coefficients for the 4D segmentation compared to the ground
truth segmentations for each of the four 3D phase volumes used for evaluation.
Dice coefficients are calculated separately for left and right lungs. Mean is
calculated across four phases and both lungs for each subject.

Subject 0%EX 40%IN 100%IN 60%EX Mean
ID Left Right Left Right Left Right Left Right

A 0.985 0.986 0.988 0.988 0.985 0.986 0.985 0.986 0.986
B 0.976 0.983 0.976 0.986 0.973 0.984 0.974 0.984 0.980
C 0.978 0.978 0.977 0.985 0.984 0.982 0.984 0.977 0.981
D 0.988 0.988 0.981 0.982 0.983 0.978 0.982 0.979 0.983
E 0.981 0.983 0.982 0.981 0.982 0.983 0.983 0.981 0.982
F 0.985 0.983 0.984 0.984 0.984 0.985 0.985 0.985 0.985

To test the sensitivity of the method to the segmentation shape prior, we ran

an additional experiment for one data set where different 3D phase volumes were

used in place of the planning CT image. This was done by using the phase volumes

at 20%IN, 60%IN, 40%EX, and 20%EX to establish the initial shape priors for the

optimal surface finding.

A.3 Results

A.3.1 4D Segmentation with planning CT as Initial Segmentation

Tables A.1 and A.2 show the Dice coefficients and mean absolute surface

distance for each of the four evaluation phases. Figure A.2 shows the automatic

4D segmentation, displayed at two of the individual phase reconstructions, for one

subject.
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Table A.2. Average symmetric absolute surface distance ± standard deviation (mm)
for the 4D segmentation compared to the ground truth segmentations for each of the
four 3D phase volumes used for evaluation. Mean is calculated across four phases and
both lungs for each subject.

Subject 0%EX 40%IN
ID Left Right Left Right

A 0.385 ± 0.807 0.437 ± 1.203 0.315 ± 0.860 0.353 ± 0.790
B 0.428 ± 0.890 0.422 ± 0.766 0.410 ± 0.715 0.394 ± 0.743
C 0.431 ± 0.755 0.536 ± 1.375 0.501 ± 1.126 0.320 ± 0.682
D 0.242 ± 0.573 0.297 ± 0.784 0.435 ± 0.959 0.491 ± 1.194
E 0.499 ± 1.315 0.536 ± 1.555 0.455 ± 1.086 0.498 ± 0.959
F 0.307 ± 0.566 0.443 ± 1.135 0.342 ± 0.655 0.376 ± 0.836

Subject 100%IN 60%EX Mean
ID Left Right Left Right

A 0.407 ± 0.841 0.459 ± 0.976 0.417 ± 0.854 0.429 ± 0.853 0.400
B 0.464 ± 0.950 0.434 ± 0.773 0.441 ± 0.778 0.407 ± 0.717 0.425
C 0.365 ± 0.896 0.423 ± 0.909 0.349 ± 0.839 0.520 ± 0.871 0.431
D 0.380 ± 0.694 0.542 ± 0.911 0.399 ± 0.795 0.547 ± 1.197 0.417
E 0.422 ± 0.747 0.468 ± 0.986 0.424 ± 1.009 0.495 ± 0.983 0.475
F 0.347 ± 0.662 0.338 ± 0.625 0.340 ± 0.716 0.353 ± 0.716 0.356
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Figure A.2. Automatic 4D segmentation results for subject A. From left to right:
0%EX coronal plane, 0%EX transverse plane, 100%IN coronal plane, 100%IN
transverse plane.

Table A.3. Dice coefficients for the 4D segmentation of subject A using four different
initial segmentations as the shape prior. Mean is calculated across four phases and
both lungs for each subject.

Initialization 0%EX 40%IN 100%IN 60%EX Mean
Phase Volume Left Right Left Right Left Right Left Right

20%IN 0.982 0.985 0.985 0.986 0.984 0.987 0.982 0.985 0.984
60%IN 0.981 0.984 0.985 0.987 0.983 0.987 0.981 0.986 0.984
40%EX 0.982 0.985 0.985 0.987 0.982 0.986 0.982 0.986 0.984
20%EX 0.981 0.985 0.985 0.986 0.983 0.987 0.981 0.985 0.984

A.3.2 Sensitivity to Initial Segmentation

The sensitivity to the choice of initial segmentation was tested by segmenting

one 4D data set (subject A) with four different phase volumes used as the initial

segmentation. Table A.3 gives the Dice coefficients for the four evaluation volumes

with four different initializations.

A.4 Discussion

The results show that image registration and optimal surface finding can be

used to produce an accurate 4D segmentation from one initial 3D segmentation.

In our experiments an average symmetric absolute surface distance of 0.417 mm
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and a mean Dice coefficient of 0.983 were obtained. This mean surface error is

less than half of a voxel. We observe that most errors were where the airways

enter the lungs at the mediastinum. This is a subjective area to manually segment,

as different boundaries may be chosen by different analysts. For comparison, a

3D thresholding based algorithm similar to [60] was applied to each volume and

an average symmetric absolute surface distance of 0.5644 mm and a mean Dice

coefficient of 0.9790 were obtained. Although the simple thresholding gave good

results, tumors were not included in the segmentation thus it is not suitable for this

application. The same mean Dice coefficient of 0.984 was obtained for all initial

segmentations showing the algorithm it robust to the initial segmentation. Since all

phase volumes were segmented simultaneously by the optimal surface finding, our final

segmentation contours are consistent across all phases. The segmentations appear to

be more consistent across phases than the manual segmentations, especially near the

mediastinum. Additionally, the method was able to include large chest wall tumors

in the segmentation, which is a difficult problem due to the similarity in intensity

with the surrounding tissue.

We were able to use a computationally inexpensive registration by using the

optimal surface finding to refine the initial segmentation result. In many cases it is

even possible to use an affine registration when the lung deformation across respiration

is not too large. The optimal surface finding incorporates shape prior information,

surface smoothness constraints, and temporal surface constraints making it ideal for

4D lung segmentation. The optimal surface finding guarantees a globally optimal



www.manaraa.com

145

minimization of the selected cost function.

The experiments were run on a Linux machine with an Intel Xeon 2.27 GHz

CPU and 48 GB of RAM. The deformable image registration takes 2 minutes per

phase, which can be done in parallel. The optimal surface finding takes approximately

4.5 minutes with our parameters. This yields a total time of 6.5 minutes to produce

segmentations of all 10 volumes of a 4D data set. The manual segmentation used for

evaluation took approximately 30 minutes per 3D volume.

The proposed framework is extensible to segmentation of other surfaces. For

example, sublobar segmentations can be used to study the mechanical properties and

sliding of the lung lobes. Our framework can be easily extended to handle lobar

segmentations.

A.5 Summary

We proposed a method for 4D segmentation of lung tissue in respiratory-gated

data sets. The method utilizes the planning CT segmentation to obtain accurate

segmentations for all phase volumes of a 4D data set. An average surface distance

of 0.417 mm and an average Dice coefficient of 0.983 were achieved. Based on

preliminary results we showed that the method is robust to the initial planning

CT image segmentation. The 4D segmentation is valuable for further quantitative

analysis of the data sets.
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APPENDIX B

ALPHA SHAPES FOR LUNG TUMOR INCLUSION

Published as: SE Gerard, HJ Johnson, JE Bayouth, GE Christensen,

K Du, J Guo, JM Reinhardt: Alpha shapes for lung segmentation

in the presence of Large Tumors. 6th International Workshop

on Pulmonary Image Analysis, 2016.

Lung segmentation is a critical initial step in planning radiation therapy

interventions for lung cancer patients. Achieving robust automatic segmentation

of lungs with large tumors is challenging due to large variations in lung morphology,

tumor location, and tumor shape between subjects. We present an automatic method

to segment lungs with large tumors in CT images using an initial intensity based

segmentation followed by alpha shape construction and graph search. We evaluated

our method by comparing automated segmentations to manual segmentations on

twelve subjects. Computed metrics for segmentation quality include average surface

distance of 0.727 mm and average DICE coefficient of 0.970. These results demonstrate

that the proposed method accurately segments the entire lung regions both free of

and in the presence of large tumors.

B.1 Introduction

Radiation therapy interventions of lung cancer patients involve acquiring a

thoracic CT scan to assess the disease state and to design a patient specific treatment

plan. Typically a respiratory correlated scan, or 4D CT, is also acquired prior to

treatment. This produces a huge amount of data, requiring automatic computer-aided

methods for further analysis. Accurate delineation of the lungs is a critical initial first
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step for treatment planning and quantitative analysis.

Normal lung tissue has high contrast with the surrounding anatomy, making

lung segmentation relatively robust using simple thresholding based methods [54, 60].

However, in the presence of large tumors, conventional threshold based methods fail

because the radiodense tumors are excluded from the segmentation. An accurate

lung tissue segmentation including the tumor is required during radiation therapy

planning, e.g., to predict the dose delivered to the normal lung tissue and the tumor

or to perform tissue motion or biomechanical analyses.

Several approaches have been used to segment pathological lungs. Statistical

shape models (SSM) use a training set of lung shapes with annotated corresponding

landmarks to capture the major modes of lung shape variation in a model that can

be fit to new lung cases [131, 136]. The SSM training set is limited to a subset of

possible lung shape variations and thus it often fails on cases that are not represented

in the training set. Segmentation by registration methods [130, 143] make use an

atlas or multiple atlases with ground truth segmentations. The atlas segmentation is

mapped to a test case using image registration. Atlas based segmentations require a

very accurate registration to get adequate results. Recently, machine learning based

methods have been proposed to classify pathological lung tissue [88, 132, 131]. The

LObe and Lung Analysis 2011 (LOLA11) challenge evaluated different algorithms on

a publicly available dataset of 55 chest CT scans with varying degrees of pathology.

In this paper we propose an alpha shape approach for inclusion of large tumors

in lung segmentations. The concept of using alpha shapes to represent a point set
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was originally presented in [33]. In [135], alpha shapes were used for boundary

reconstruction of shapes in 2D images. In [17] alpha shapes were used to generate

patient specific maps for renal segmentation in 3D ultrasound images. To the best

of our knowledge, this is the first time that alpha shapes have been applied to the

problem of lung segmentation.

B.2 Methods

The proposed method has three main steps: an initial intensity based segmentation,

an alpha shape computation of the initial mask, and an optimal graph search for final

refinement. Figure B.1 shows a flowchart of the method. Each of these steps will be

described next.

Figure B.1. Flowchart of the proposed segmentation method.

B.2.1 Initial Segmentation

First, we obtain an initial segmentation of the lungs using an intensity-based

approach [54]. The method from [54] consists of three main steps: extraction of

lungs using optimal thresholding, separation of the right and left lungs, and optimal
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smoothing to smooth the lung boundaries. This gives separate masks for both left

and right normal lung tissue lung, however large dense tumors are not included in

the segmentation. We will refer to this result as the initial mask. The next steps will

process initial masks for the left and right lung separately.

B.2.2 Alpha Shapes

Given a finite set of points P ∈ Rn and 0 ≤ α ≤ ∞, an α-shape is one way

to represent the shape of P . If α = ∞, the α-shape is equivalent to the convex hull

of P . A family of shapes can be obtained by varying α; as α decreases the α-shape

gradually becomes more constricted to a tighter fit around P .

The Delaunay triangulation of a point set can be used to calculate the α -shape.

The Delaunay triangulation of a point set DT (P ) is the triangulation that maximizes

the minimum angle of each d-simplex t ∈ DT (P ). Note: in 2D and 3D the d-simplices

t are triangles and tetrahedrons, respectively. DT (P ) is the dual graph of the Voronoi

diagram of P . The α-shape consists of a subset of d-simplices t ∈ DT (P ); it is the

union of d-simplices t ∈ DT (P ) with circumsphere radius Rc(t) ≤ α.The surface mesh

representation of the α-shape consists of all boundary facets of these d-simplices. The

Delaunay triangulation and α-shape calculation is illustrated in Figure B.2 using a

toy example and Figure B.3 using a 2D lung example.

The lung shape is approximately convex along the pleural surface, so the

convex hull of the initial mask gives a good estimate of the boundary for this surface,

even in presence of large chest wall tumors. However, the mediastinum and diaphragm

regions are not convex so the convex hull oversegments these regions. α-shapes allow
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(a) α =∞ (b) α = 33 (c) α = 25 (d) α = 20 (e) α = 15

Figure B.2. Simple example showing Delaunay triangulation and α-shape calculation.
The red circles are the point set. B.2(a)- B.2(e) show the Delaunay triangles that
make up the α-shape for decreasing values of α. B.2(a) α = ∞ is equivalent to the
Delaunay triangulation and convex hull. As α decreases, triangles are removed that
have a circumcircle with radius greater than α. For each example, the α-shape is the
union of all triangles.

us to elegantly obtain a family of shapes that smoothly interpolate between the convex

hull and initial mask to represent the lung shape.

As the α-shape is defined on a point set, rather than an image, first we obtain a

set of points p ∈ P representing the initial mask. We could use the physical locations

of all image voxels in the mask as our point set, however for time efficiency we chose

to only take a sample of these voxels. We performed image erosion and subtraction

operations to generate a set of concentric contours of the initial mask and used these

voxel locations for P . To ensure all of the initial mask is included in the α-shape,

the separation between concentric contours needs to be small enough such that the

d-simplices formed between contours have a circumradius smaller than α.

There is a trade off between oversegmentation and undersegmentation when

choosing α. If α is too large, the mediastinum is oversegmented, however decreasing α

too much can remove tumors (Figure B.4). We experimented with different values of

α to obtain lung shapes that included tumor regions and minimized oversegmentation
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near the diaphragm and mediastinum. The diaphragm is easily removed due to the

broad concave structure, however the mediastinum has many very small concavities

resulting in minor oversegmentation that cannot be removed without removing the

tumor. We empirically determined α = 25 to give good results for all subjects in this

study. Prior to the next step, we performed Laplacian smoothing [59] on the alpha

shape surface to remove sharp edges.

(a) CT (b) Initial Mask (c) Point Set (d) α = 200

(e) α = 66 (f) α = 50 (g) α = 33 (h) α = 15

Figure B.3. B.3(a) CT image showing large radiodense tumor in right lung, B.3(b)
initial mask produced by thresholding, B.3(c) point set used to represent initial
mask, B.3(d)- B.3(h) Delaunay triangles that form the alpha shape for decreasing
alpha values. Note: this is a 2D example for illustrative purposes; the actual method
is performed in 3D with tetrahedrons instead of triangles.
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(a) α = 200 (b) α = 25 (c) α = 9

Figure B.4. Alpha shape of initial mask for different values of α. B.4(a) is
approximately equal to the convex hull of the initial mask, B.4(c) is approximately
equal to the initial mask.

B.2.3 Graph Search

To reduce minor mediastinum oversegmentation resulting from small concavities,

we use a graph search framework to find the optimal lung surface. The method will

only briefly be described here; see [79] for a detailed description of the method.

The graph search method requires an initial surface to initialize the graph

construction, here we use the alpha shape from the previous step. A graph G(E, V )

consisting of node set V and edge set E is built in a margin around the initial surface.

The nodes have an associated cost reflecting the unlikeliness that it belongs to the

lung surface. We use the inverse gradient of the CT image for the cost, as the lung

surface has a high image gradient. Edges are used to enforce smoothness constraints,

or how much the topology of the resulting segmentation can deviate from the initial

surface. The globally optimal surface is obtained by using a maximum flow algorithm

on a closely derived graph.

As a final step we performed a logical OR operation between the graph search
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result and the initial mask. This adds back in sharp edges, such as those at the

costaphrenic angle, that are lost when the smoothing is performed.

B.3 Data Sets and Experimental Setup

In this study we used breath-hold thoracic CT scans from twelve lung cancer

subjects about to undergo radiation therapy. All scans were gathered under a protocol

approved by the University of Iowa Institutional Review Board (IRB 200905703). All

images were resampled from 0.98× 0.98× 2 mm3 to obtain 1× 1× 1 mm3 isotropic

voxels. We chose 11 subjects that had a large lung tumor in either the left or right

lung, and one subject with no lung tumors.

Our method was evaluated by comparing to manual segmentations generated

by a radiation therapy physicist using the MimVista 6.4.7 software (MIM Software,

Cleveland, OH) following a protocol similar to that used for radiation therapy planning.

The DICE coefficient was used for a metric of volume overlap, and the average

unsigned symmetric surface distance was used to measure the distance between the

lung boundaries. The analysis was performed on both the left and right lungs of all

subjects. Additionally, we compared the results of lungs with and without tumors.

The proposed method was implemented using the Jupyter Notebook [105]

rapid prototyping environment, algorithms from ITK [64] python wrapped in SimpleITK [85]

in coordination with vtkDelaunay3D from VTK (www.vtk.org).

B.4 Results

Figure B.5 shows the average unsigned surface distances for the initial mask

and our final segmentation for both tumor and non-tumor groups. Figure B.6 shows
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the result at each step of the proposed method and the manual segmentation.

B.5 Discussion

The method shows good results with an average unsigned surface distance of

0.727 mm and an average DICE coefficient of 0.970 for all subjects. This surface

distance is on the sub-voxel level. Additionally, we split the lungs into tumor and

non-tumor groups. The DICE coefficient was 0.967 and 0.971 for tumor and non-tumor

groups, respectively. The average unsigned surface distance was 0.758 mm and 0.702

mm for tumor and non-tumor groups, respectively. A t-test was performed to compare

the surface distance error for lungs with tumors and lungs without tumors and no

significant difference was found (p-value = 0.314). The surface distance for the initial

mask was 1.368 mm and 0.710 mm for tumor and non-tumor groups, respectively.

These results show that compared to the initial mask, our method significantly

improves the average surface distance error for lungs with tumors (p-value 0.0008)

and does not significantly change the average surface distance error for lungs without

tumors (p-value 0.867).

By visual inspection, it is clear that the majority of the discrepancy between

our results and the manual segmentations occur at the mediastinum. This is a

subjective region to segment, as can be observed on coronal slices of the manual

segmentations. The manual segmentations were done on transverse slices and variation

on where the mediastinal boundary was define between slices resulted in the boundary

not being smooth in 3D. The proposed method produces a smooth mediastinum

boundary that is consistent between subjects.
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It is important to note that this method is limited by the convex hull of the

initial segmentation. If the tumor is outside the convex hull, it will fail to be included

in the final result. For example, tumors that span the entire apex region of the lung

will not be included. This is a current limitation to our method, but could possibly

be overcome by including points from the rib cage when calculating the convex hull.

In future work we plan on identifying the optimal α for each subject rather

than using the same α for all subjects. Additionally, we plan to experiment with

automatically identifying a spatially varying alpha to overcome over segmentation

near mediastinum.

The experiments were run on a Linux machine with an Intel Xeon 2.27 GHz

CPU and 48 GB of RAM. Generating the alpha shape and the graph search take

approximately 13 and 1 minute(s) of computer time, respectively. The manual

segmentation took on average 53 minutes per subject.

B.6 Summary

We proposed a method for segmentation of lungs in the presence of large

tumors. The method utilizes an intensity based segmentation, alpha shapes correction,

and a graph search framework final refinement. An average surface error distance

of 0.727 mm and DICE coefficient of 0.970 and were achieved. The accurate lung

segmentation with inclusion of tumor regions is valuable for radiation therapy treatment

planning and further quantitative analysis.
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Figure B.5. Average unsigned surface distances for both the initial mask and our
final result compared to the manual segmentation. B.5(a) and B.5(b) show results for
lungs with and without tumors, respectively.
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Figure B.6. Segmentation at each step of the proposed method for four different data
sets displayed in columns one to four. Row 1: CT image. Row 2: initial mask. Row
3: alpha shape of the initial mask. Row 4: final segmentation using the proposed
automatic method. Row 5: manual segmentation.
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Cornejo, and Guillermo Bugedo. Lung recruitment in patients with the
acute respiratory distress syndrome. New England Journal of Medicine,
354(17):1775–1786, 2006.

[45] Luciano Gattinoni, Pietro Caironi, Paolo Pelosi, and Lawrence R Goodman.
What has computed tomography taught us about the acute respiratory distress
syndrome? American journal of respiratory and critical care medicine,
164(9):1701–1711, 2001.

[46] Kevin George, Adam P Harrison, Dakai Jin, Ziyue Xu, and Daniel J Mollura.
Pathological pulmonary lobe segmentation from CT images using progressive
holistically nested neural networks and random walker. In Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
pages 195–203. Springer, 2017.



www.manaraa.com

163

[47] Sarah E Gerard, Jacob Herrmann, David W Kaczka, and Joseph M Reinhardt.
Transfer learning for segmentation of injured lungs using coarse-to-fine
convolutional neural networks. In Image Analysis for Moving Organ, Breast,
and Thoracic Images, pages 191–201. Springer, 2018.

[48] Sarah E. Gerard, Hans J. Johnson, John E. Bayouth, Gary E. Christensen,
Kaifang Du, Junfeng Guo, and Joseph M. Reinhardt. Alpha shapes for lung
segmentation in the presence of large tumors. In 6th International Workshop
on Pulmonary Image Analysis, pages 9–17, 2016.

[49] Sarah E Gerard, Taylor J Patton, Gary E Christensen, John E Bayouth, and
Joseph M Reinhardt. FissureNet: A deep learning approach for pulmonary
fissure detection in CT images. IEEE Trans. Medical Imaging, 2018. PMID:
30106711.

[50] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.

[51] Thomas Godet, Matthieu Jabaudon, Räıko Blondonnet, Aymeric Tremblay,
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