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ABSTRACT

Computed tomography (CT) is routinely used for diagnosing lung disease and
developing treatment plans using images of intricate lung structure with submillimeter
resolution. Automated segmentation of anatomical structures in such images is
important to enable efficient processing in clinical and research settings. Convolution
neural networks (ConvNets) are largely successful at performing image segmentation
with the ability to learn discriminative abstract features that yield generalizable
predictions. However, constraints in hardware memory do not allow deep networks
to be trained with high-resolution volumetric CT images. Restricted by memory
constraints, current applications of ConvNets on volumetric medical images use a
subset of the full image; limiting the capacity of the network to learn informative
global patterns. Local patterns, such as edges, are necessary for precise boundary
localization, however, they suffer from low specificity. Global information can disambiguate
structures that are locally similar.

The central thesis of this doctoral work is that both local and global information
is important for segmentation of anatomical structures in medical images. A novel
multi-scale ConvNet is proposed that divides the learning task across multiple networks;
each network learns features over different ranges of scales. It is hypothesized that
multi-scale ConvNets will lead to improved segmentation performance, as no compromise
needs to be made between image resolution, image extent, and network depth. Three

multi-scale models were designed to specifically target segmentation of three pulmonary
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structures: lungs, fissures, and lobes.

The proposed models were evaluated on a diverse datasets and compared
to architectures that do not use both local and global features. The lung model
was evaluated on humans and three animal species; the results demonstrated the
multi-scale model outperformed single scale models at different resolutions. The
fissure model showed superior performance compared to both a traditional Hessian
filter and a standard U-Net architecture that is limited in global extent.

The results demonstrated that multi-scale ConvNets improved pulmonary CT
segmentation by incorporating both local and global features using multiple ConvNets
within a constrained-memory system. Overall, the proposed pipeline achieved high
accuracy and was robust to variations resulting from different imaging protocols,
reconstruction kernels, scanners, lung volumes, and pathological alterations; demonstrating

its potential for enabling high-throughput image analysis in clinical and research

settings.
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PUBLIC ABSTRACT

Convolution neural networks (ConvNets) are largely successful at performing
image segmentation with the ability to learn complex and discriminative patterns
in image data. Constraints in hardware memory do not allow deep networks to be
trained with large images, such as volumetric medical images. Restricted by memory
constrains, current applications of ConvNets on volumetric medical images use a
subset of the full image; limiting the capacity of the network to learn informative
global patterns. Local patterns, such as edges, are necessary for precise boundary
localization, however, they suffer from low specificity. Global information can help
disambiguate structures that have similar local appearance. The central thesis of
this doctoral work is that both local and global image patterns are important for
segmentation of anatomical structures in medical images. A novel multi-scale ConvNet
is proposed that divides the learning task across multiple networks; each network
learns features over different ranges of scales. Three multi-scale models were designed
to target segmentation of three pulmonary structures: lungs, fissures, and lobes. The
results demonstrated that multi-scale ConvNets improved pulmonary C'T segmentation
by incorporating both local and global features using multiple ConvNets within a
constrained-memory system. Overall, the proposed pipeline achieved high accuracy
and was robust to variations resulting from different imaging protocols, reconstruction
kernels, scanners, lung volumes, and pathological alterations; demonstrating its potential

for enabling high-throughput image analysis in clinical and research settings.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Specific Aims

Medical imaging applies principles of electromagnetic radiation and inverse
problem solving to noninvasively reconstruct spatially varying physical properties of
the anatomy. Medical imaging is an invaluable tool for diagnosing diseases, developing
and guiding treatment interventions, and monitoring progression of disease. There
are various imaging modalities which make use of physical phenomena to measure
structural or functional information inside the body. Computed tomography (CT)
imaging is commonly used to image the lungs as it is capable of producing high-resolution
images with soft tissue contrast. Technological advancements in CT imaging have
made it possible to generate images with submillimeter spatial resolution in less
than a second. Furthermore, the emergence of 4ADCT imaging enables acquisition
of temporally resolved images for tracking thoracic motion during breathing. With
the increasing prevalence of lung disease there is an increase in the number of thoracic
CT scans being acquired in clinical and research environments. This provides a rich
source of information for characterizing lung disease and its progression. However,
the amount of data that is being produced imposes a high demand on radiologists to
manually read and extract relevant information in these large scans. Computer-aided
algorithms have great potential in assisting radiologists in efficiently processing and
fully utilizing the information present in CT images.

Segmentation of the region of interest is an initial step for analyzing CT
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images. While manual segmentation is possible, it is prohibitively time-consuming,
tedious, and subject to intra- and inter-observer variations. Automated segmentation
is critical to foster efficient workflows in clinical and research settings. There has been
extensive efforts in developing automated segmentation algorithms for lung, fissures,
and lobes in thoracic CT scans. The majority of these methods are rule-based systems
which consist of a pipeline of steps targeting a specific anatomy. These methods are
generally evaluated on small datasets of 10-30 scans from one study and may not
be robust to the variations seen in large datasets, e.g. multi-institutional clinical
trials. Different scanners, image reconstruction kernels, and imaging dose can greatly
effect the appearance of pulmonary CT images. Designing rule-based systems that
are robust to all these factors has been a major challenge.

Recently, in the computer vision field there has been a paradigm shift from
designing rule-based algorithms to allowing computers to learn from data without
being explicitly programmed. Deep learning using convolutional neural networks
(ConvNets) have been successful at solving tasks in computer vision including image
classification, object detection, and segmentation. The majority of the development
and application of these tools has been on natural 2D images. A major barrier to
applying these techniques to medical images is the size of 3D datasets and ability
to train on full images given limitations in GPU memory. The majority of ConvNet
methods for medical imaging applications train on 2D slices or local 3D patches.
Such methods sacrifice global context and spatial smoothness in 3D. Furthermore,

patch-based approaches are not as efficient since the model needs to be evaluated for
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all patches in the image. The hierarchical design of ConvNets give them the ability to
learn multi-scale features with different levels of abstraction. This is a distinguishing
feature which makes ConvNets so powerful compared to feature engineering and
rule-based methods. However, training ConvNets using 2D slices or 3D patches
greatly limits the global context that can be learned.

For segmentation of the pulmonary anatomy local appearance is necessary
for precision, however, it is not sufficient for discriminating various structures and
textural patterns. Local appearance of injured lung can be indistinguishable from
surrounding soft tissue without the anatomical cues from the ribcage. Many image
features can locally resemble the characteristic plate-like appearance of fissures. However,
when viewing the entire lung the fissure can be readily identified using prior knowledge
of the fissure orientation and proximity to blood vessels. Global context from the
entire image is critical for learning anatomical variations in shape and relative location
of the anatomy.

The overarching theme of this work is to design ConvNet models which enable
learning of global and local features for segmentation in large medical images. The
motivation of this work is to allow for high-throughput regional image
analysis of lungs in thoracic CT scans. This is accomplished through
development and extensive evaluation of a pipeline consisting of a series
of multi-scale ConvINets for pulmonary segmentation in CT images. The

following specific aims were achieved in this doctoral thesis:

1. Segmentation of lungs across multiple species and pulmonary diseases.
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2. Segmentation of pulmonary fissures in COPD and lung cancer subjects.

3. Segmentation of pulmonary lobes in COPD and lung cancer subjects.

1.2 Thesis Organization

This dissertation is presented in manuscript style, therefore each chapter can
be read independently. As a result, there is some repetition between chapters for
completeness. The contributions of this dissertation are presented in Chapters 4, 5, 6,and 7
and Appendices A and B of the Appendix. Chapters 4- 7 are works which fall
under the multi-scale ConvNet theme of this dissertation. Appendices A and B are
preliminary works that fall under the rule-based segmentation category. Below is a
brief summary of remaining chapters is provided.

Chapters 2 and 3 present background information relevant to this dissertation
work. Chapter 2 presents background information on physiology of the respiratory
system, CT imaging of the lungs, and clinical trials which use imaging to study
pulmonary diseases. Chapter 3 presents a brief overview of deep learning models
including artificial neural network (ANNs) and convolutional neural networks (ConvNets).

Chapter 4 introduces a novel multi-resolution ConvNet for 3D image segmentation.
The model was designed to enable ConvNet models to first learn global features
and then learn local features in large medical images. The model was applied to
segmentation of pathological lungs in human datasets. Extensive evaluation of the
method was performed on a diverse dataset of 899 CT images of subjects with
COPD, IPF, and lung cancer. The method achieved high performance and repeatable

quantitative computed tomography (qCT) measurements when compared to manual
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segmentations.

Chapter 5 extends the multi-resolution ConvNet model presented in Chapter 4

to segment lungs in three animal species with severe lung injury. Transfer learning was
utilized to exploit features learned from the human trained model. The multi-resolution
ConvNet showed superior performance compared to single resolution models. The
proposed method was evaluated on four datasets consisting of three animal species
using a five fold cross-validation.
Prepared for submission to Medical Image Analysis. Modified from: SE Gerard,
J Herrmann, DW Kaczka, JM Reinhardt: Transfer Learning for Segmentation of
Injured Lungs Using Coarse-to-Fine Convolutional Neural Networks. Image Analysis
for Moving Organ, Breast, and Thoracic Images, 2018. [47]

Chapter 6 presents a novel ConvNet-based model for fissure segmentation.

The model initially learns a fissure region of interest (ROI) and subsequently refines
the precise fissure location within the ROI. This model is designed to alleviate the
class-imbalance between fissure voxels and non-fissure voxels. The proposed method
was extensively evaluated on 7412 images from COPDGene and 20 images from 4DCT
scans of lung cancer subjects.
Published in: SE Gerard, TJ Patton, GE Christensen, JE Bayouth, JM Reinhardt:
FissureNet: A Deep Learning Approach for Pulmonary Fissure Detection in CT
images. IEEE Trans Med Imaging, 2018. [49]

Chapter 7 presents a multi-resolution ConvNet model for lobe segmentation.

The model has the same design as the multi-resolution model proposed in Chapter
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5. To allow for aggressive downsampling without loss of the fissure signal, the fissure
prediction from the model proposed in Chapter 7 serves as an input to the lobe
segmentation model. The proposed method was evaluated on 1152 images from the
COPDGene dataset.

Submitted as: SE Gerard and JM Reinhardt: Pulmonary Lobe Segmentation Using
a Sequence of Convolutional Neural Networks for Marginal Learning. International
Symposium on Biomedical Imaging (ISBI), 2019.

Chapter 8 presents an overall discussion and conclusion to this dissertation
work.

Appendix A presents a 4D lung segmentation algorithm. The method initially
performs a rough registration to align all phases of a 4DCT scan. A 4D optimal
surface finding graph search is used which incorporates temporal constraints.
Published in: SG Yeary, GE Christensen, JE Bayouth, S Bodduluri, Y Pan, J
Guo, K Du, JH Song, B Zhao, I Oguz, JM Reinhardt: 4D Lung CT Segmentation
for Radiation Therapy Applications. ICART: Imaging and Computer Assistance in
Radiation Therapy, 2015. [159]

Appendix B presents a segmentation algorithm for inclusion of large tumors.
The proposed method starts with an intensity-based segmentation algorithm which
identifies normal lung tissue. Alpha shapes are applied to the intensity-based segmentation
to include large tumors.

Published in: SE Gerard, HJ Johnson, JE Bayouth, GE Christensen, K Du, J Guo,

JM Reinhardt: Alpha shapes for lung segmentation in the presence of Large Tumors.
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6" International Workshop on Pulmonary Image Analysis, 2016. [48]
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CHAPTER 2

BACKGROUND

2.1 Respiratory System

The function of the respiratory system is to facilitate the transfer of oxygen
and carbon dioxide between an organism and the environment. The respiratory
system consists of lungs, airways, pulmonary vasculature, and respiratory muscles
(Figure 2.1). The lungs are located in the chest cavity and are surrounded by the rib
cage for protection. Humans have a left and a right lung which are enclosed in a double
layer membrane called the pleural sac. Invagination of the inner membrane forms the
pulmonary fissures which anatomically separate the lungs into five lobes. The left lung
has two lobes, the lower and upper lobe which are separated by the oblique fissure.
The right lung has three lobes, the lower and middle lobe are separated by the oblique
fissure and the middle and upper lobe are separated by the horizontal fissure. The
accessory fissures further separate the lobes into bronchopulmonary segments. Each
lobe is supplied by separate vasculature and airway trees.

The pulmonary airways form a tree like structure consisting of approximately
twenty-three generations of branching in humans. The trachea is the primary conduit
that transfers air between the environment and the lungs. The trachea splits into a left
and right main bronchi which enter the left and right lung, respectively. Within the
lungs the main bronchi subdivide into lobar bronchi, segmental bronchi, bronchioles,
terminal bronchioles, respiratory bronchioles, and finally terminate with alveolar sacs

containing tiny hollow structures called alveoli. The alveolus is the functional unit
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Figure 2.1. Anatomy of the human respiratory system. Image taken from [147].

of the lung where gas exchange occurs. The capillaries are a network of small blood
vessels that surround the alveoli, through diffusion oxygen is transferred from the
alveoli to the capillary blood and carbon dioxide is transferred from the blood to the
alveoli.

The lungs have their own vascular system which allows blood to flow from the
heart, to the lungs, and back to the heart, a process called pulmonary circulation.
Deoxygenated blood leaves the heart through the pulmonary artery and travels to the
lungs. Within the lungs the blood travels through arteries, arterioles, and capillaries
where it becomes oxygenated. The oxygenated blood travels through venules, veins,
and finally back to the heart via the pulmonary vein. The heart supplies the oxygen

rich blood to the rest of the body, a process called systemic circulation.
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2.2 Computed Tomography

Computed tomography (CT) imaging is used to create high-resolution and
high-contrast volumetric images of the pulmonary anatomy. This enables the visualization
of the intricate lung structures, such as vasculature and airways, as well as the
heterogeneous textures of the lung parenchyma. A CT image is produced by measuring
the attenuation of X-rays at different angles around a body. Each angle produces a
projection of the anatomy, which can be used to reconstruct a 3D image. A CT image
has intensity values of Hounsfield Units (HU). HU is calculated by applying a linear
transformation to the measured linear attenuation coefficient, such that distilled water
is 0 HU and air is -1000 HU. High-density tissues attenuate the X-rays more than
low-density tissues; tissues with high attenuation appear bright, such as bone and
blood, and tissues with low attenuation appear dark, such as air. Figure 2.2 displays
the three standard anatomical cross-sections of a CT image: axial, coronal, sagittal.

Thoracic CT scans are commonly acquired while the subject is performing
a breath-hold maneuver. Standard lung volumes are commonly used such as total
lung capacity (TLC), functional residual capacity (FRC), or residual volume (RV).
If multiple scans are acquired at different lung volumes for a given subject, image
registration can be used to obtain quantitative measurements of lung dynamics [155],
lung mechanics [3], and regional lung ventilation [31]. Parametric response mapping
(PRM) also utilizes image registration and is used to characterize different phenotypes
of COPD by measuring the extent of functional small airways disease (fSAD) and

emphysema [43].
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The use of four-dimensional CT (4DCT) has increased greatly since the early
2000s [34] as it is capable of imaging the lungs over the respiratory cycle providing
spatial-temporal information. Keall et al. [66] define 4DCT imaging as “The acquisition
of a sequence of CT image sets over consecutive segments of a breathing cycle”.
The use of 4DCT during radiotherapy planning allows consideration of temporal
changes of the anatomy caused by intrafraction motion, or anatomical motion during
a treatment session due to breathing, and thus greater precision of treatment. A
4DCT scan is acquired while the subject is breathing and the respiratory trace
is simultaneously being recorded. A schematic of an idealized respiratory trace is
illustrated in Figure 2.3. A strain gauge belt or a reflective cube on the chest wall are
used as an external surrogate for respiratory volume. Retrospectively-gated 4DCT
sorts the image data into different “phase” or “amplitude” bins post-acquisition using
the external respiratory signal. Amplitude-based sorting has been shown to produce

less artifacts for nonperiodic motion [154].

2.3 Respiratory Pathologies
Respiratory pathologies are the number three leading cause of death in the
United States [40]. Subjects afflicted with pulmonary disease have difficulty breathing
normally. There are many types of diseases which affect the lungs, including obstructive
diseases like chronic obstructive pulmonary disorder (COPD) which lead to difficulties
in expelling air in the lungs; and restrictive diseases like interstitial lung disease (ILD)
which leads to stiffening of the lung tissue. Figure 2.4 depicts the appearance of

different lung diseases in cross-sectional views of CT images. The motivation of this
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(a) Axial (b) Coronal (c) Sagittal
Figure 2.2. Standard cross-sectional views of a volumetric thoracic CT scan. CT

images are oriented with the left lung on the right side of the images in axial and
coronal cross-sections.

Figure 2.3. Schematic of idealized external respiratory signal with amplitude-sorted
bins of 4DCT image.
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work is to enable high-throughput regional analysis on large-scale pulmonary CT
datasets with pathologies. This work includes five large-scale datasets: lung cancer
clinical trial (NIH CA166703) [101], COPDGene clinical trial [115], SPIROMICS [23,
129, 22|, PANTHER-IPF [93, 94], and acute respiratory distress syndrome study with

multiple animal species study.

(a) COPD (b) IPF (¢) Lung Cancer (d) ARDS

Figure 2.4. Axial slices of CT scans of various pulmonary diseases and injuries.

2.3.1 Lung Cancer

Lung cancer is the leading cause of cancer related deaths world wide, accounting
for 1.59 million deaths annually. In the United States it is estimated that in 2016
alone there will be nearly 225,000 new cases and 158,000 deaths due to lung and
bronchus cancer [1]. The five-year survival rate is 54 percent if detected at an early
stage but only 4 percent for advanced stages. Unfortunately, only 15 percent of lung
cancer cases are detected at an early stage. Early detection and treatment can greatly
increase the chances of survival. Much effort has been put into lung cancer screenings

using computed tomography (CT) imaging for high risk individuals such smokers.
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Screening with low-dose CT scans has shown to increase the chance of survival for
heavy smokers [2]. CT imaging is used in all stages of lung cancer screening, detection,
diagnosis, and treatment. With the increasing resolution and quantity of C'T images
there is a high demand for computer-based analysis systems to automatically extract
quantitative measurements from the large datasets.

The lung cancer dataset used in this study is from a clinical trial (NIH CA166703)
which is using functional avoidance radiation therapy for lung cancer treatment.
Radiation therapy is used on approximately 85 percent of lung cancer patients to
help manage lung cancer. Radiotherapy uses high energy X-rays to kill cancer
cells, however, the X-rays also damage healthy cells. The effectiveness of radiation
therapy has been shown to be superior when high doses are administered. However,
current protocols limit the amount of dose to sub-therapeutic levels to avoid lung
toxicity. Currently, lung toxicity is evaluated based on the dose-volume relationship
of the lung tissue being treated. This simple metric ignores the complex interplay
of the spatial and temporal heterogeneity of lung function and anatomy and its
response to dose. The novelty of this clinical trial is that high functioning regions are
avoided in the dose plan. Functional information is obtained from performing image
registration on the different volumes of a 4DCT image. Image registration produces
a dense transformation that matches corresponding points between two images. The
determinant of the Jacobian matrix of the transformation (J) represents the local
volumetric expansion or contraction. The determinant of the Jacobian is used as a

surrogate for lung ventilation. While this method ignores the perfusion component
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of lung function, these metrics are readily obtainable as a 4DCT scan is necessary
for conventional treatment. Therefore, there is no additional imaging or cost to the
patient. Figure 2.5 shows a Jacobian image, which can be used as a surrogate for lung
function [116, 29], with the conventional RT dose plan and the functional avoidance
dose plan. The high functioning region in the anterior right lung receives high dose

in the conventional plan, however, this region is avoided in the avoidance plan.

FE e
0 15 30 45 60 0

0.90 120 1.50 15 30 45 60
J Gy Gy
(a) Jacobian (b) Conventional (c) Functional Avoidance

Figure 2.5. Jacobian and radiation therapy treatment plans.

In total, 120 subjects will be enrolled in the clinical trial with 60 randomized to
the control arm (conventional RT) and 60 subjects randomized to the experimental
arm (function avoidance RT). For each subject, two 4DCT scans are acquired at
baseline prior to RT, which are used to develop the treatment plan. The two scans
are acquired in order to evaluate repeatability of measurements; with the assumption

that the anatomy and function should not change between the two scans. Duplicate
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scans are acquired post-treatment at 3 month, 6 months and 9 months. Therefore,
each subject has eight 4DCT scans. Each 4DCT scan consists of ten 3D images. This
produces a huge amount of data which needs to be analyzed: 9600 3D high-resolution
images.

2.3.2  Chronic Obstructive Pulmonary Disease

In 2008, COPD was the third leading cause of death in the United States [40].
The main cause of COPD is smoking, however, smoking is neither necessary nor
sufficient to develop COPD [8, 106, 63]. COPD is a combination of emphysema
and chronic bronchitis [89]. Emphysema results from the destruction of the alveoli
and chronic bronchitis occurs when the lining of the bronchial tubes become inflamed.
Radiographically, emphysema is characterized by large airspaces resulting from parenchymal
tissue destruction, and chronic bronchitis is characterized by airway wall thickening
and enlarged blood vessels. The extent and spatial patterns of emphysema and air
trapping can be measured from CT images.

COPDGene is a large multi-center clinical trial with over 10,000 subjects
enrolled [115]. CT images were acquired across 21 imaging centers using a variety of
scanner makes and models. Each subject had two breath-hold 3D CT scans acquired,
one at TLC and one at FRC. A subset of of subjects had an additional RV scan.

SPIROMICS is a large multi-center clinical trial studying subpopulations and
intermediate outcomes of COPD subjects [23, 129, 22]. CT images of subjects in this

study were acquired at TLC and RV.
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2.3.3 Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to
scarring of the lung tissue. Subjects with IPF have difficulty taking deep breaths and
cannot get enough oxygen to the lungs. IPF is a form of ILD, i.e., it is a disease that
affects the interstitium.
The IPF dataset was obtained from an ancillary study of PANTHER-IPF [93,
94]. The ancillary study study image derived IPF textural patterns in CT images

and their relations to disease progression [122].

2.3.4 Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure
that leads to inflammation and fluid accumulation in the lungs [41]. Radiographically
this condition presents with diffuse bilateral consolidation in the dependent lung
region as shown in Figure 2.4(d). ARDS subjects require mechanical ventilation for
survival until recovery. CT imaging can be used for diagnosis of ARDS and to perform
quantitative analysis of spatial aeration during mechanical ventilation.

A multi-species dataset consisting of animal models of ARDS was used in this
work. The dataset consists of canine, porcine, and ovine with lung injury mimicking
ARDS. The porcine subjects have both 3DCT scans at constant pressures and 4DCT

phase-gated scans acquired during different mechanical ventilation protocols.
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CHAPTER 3

DEEP LEARNING AND NEURAL NETWORKS

Machine learning is a form of data analytics which enables computers to
learn from data rather than being explicitly programmed. Machine learning can
be divided into supervised learning and unsupervised learning; supervised learning
uses labeled training data and aims to find the mapping between inputs and label,
whereas unsupervised learning aims to find patterns and clusters in unlabeled data.

Traditional machine learning uses explicitly defined features extracted from
raw data. These features are manually engineered based on domain knowledge of the
problem at hand and are typically limited to low-level features. Many research efforts
have worked on the design of informative features in images. Examples of such image
features include scale-invariant feature transform (SIFT) [84], histogram of oriented
gradients (HOG) [26], Gabor filters [87], and local binary patterns (LBP) [98].

Deep learning is a subgroup of machine learning algorithms which combines
the feature extraction and the output prediction in one integrated system. This
eliminates the need to design features and instead enables automated learning of
features which are most useful mapping inputs to outputs. This key difference between
traditional machine learning and deep learning is illustrated in Figure 3.1. Neural
networks are the primary model used for deep learning frameworks, which have a
hierarchical design allowing for features with different levels of abstraction to be

learned. This chapter will introduce artificial neural networks (ANNs), convolutional
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neural networks (ConvNets), popular ConvNet architectures, and the process of

“training” neural networks.

Traditional Machine Learning

.............................................................................................................................................
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Figure 3.1. Comparison of traditional machine learning and deep learning.

3.1 Artificial Neural Network
A multilayer perceptron (MLP) or artificial neural network (ANN) is a computation
model that was inspired by the biological neural networks in animal brains. The
fundamental unit of an ANN is a neuron. Each neuron has a set of inputs and
the neuron computes a weighted sum of its inputs and applies a nonlinear function
to produce an output. Multiple neurons are organized into layers and layers are
stacked hierarchically, i.e., the output of layer ¢ is the input to layer ¢ + 1. Each

layer can be represented as a vector and the weights connecting layers ¢ and ¢+ 1 can
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be represented as a matrix where each element represents the connection strength
between each neuron in a layer ¢ to each neuron in layer ¢ + 1. The output of the
layer can efficiently be computed as a matrix-vector multiplication between the weight
matrix and the vector input producing a vector output. A schematic of an ANN with
four input units, two hidden layers with five neurons each, and an output layer with

two units is illustrated in 3.2. The functional form of this neural network is
flz, W) = Wa(a(Wi(e(Woz)))), (3.1)

where x is the input vector, o(+) is a nonlinear function, and W is the set of weights
consisting of Wy, Wi,and W5, which are weight matrices for the first, second, and
third layers, respectively. The number of hidden layers and number of neurons in
each hidden layer are hyperparameters which are experimentally determined; more
hidden layers and hidden neurons results in more free parameters used to fit the

model.

3.2 Convolutional Neural Networks

Convolutional neural networks (ConvNets or CNNs) are a specialized neural
network designed for learning patterns in spatially correlated data, such as images
and videos. The input to a ConvNet has is multidimensional tensor with elements
that are spatially correlated. These spatial relationships are preserved throughout
the ConvNet. A ConvNet consists of a hierarchy of layers. Each layer i takes an
input image representation I; and transforms it to an output image representation
I;1. The output of a layer serves as the input to the next layer in the hierarchy.

I; and I;;; are both 4-dimensional (4D) tensors, with three spatial dimensions and
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Figure 3.2. Multi-layer perceptron with two hidden layers each with five neurons.

one channel dimension. The channel dimension represents different feature types and

is analogous to the red, green, and blue channels in a RGB image. The sizes of [;

and ;11 are X; X Y; X Z; x C; and X; 11 X Y11 X Z;11 X Ciyq, respectively, where

X,Y, Z are the spatial dimensions and C'is the channel dimension. There are different

layer types which perform various transformations, the most common layer types are:

convolutional, nonlinearity, pooling, and transposed convolution. Each layer type has

a set of learned parameters and a set of hyperparameters. The learned parameters

will be optimized during training. The hyperparameters are fixed parameters that do

not change.

A convolutional layer performs image convolution with a kernel and the input

image. The kernels are also 4D tensors, with local spatial extent and a channel extent
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which equals the input channel size. The kernel can be thought of as a feature detector
and the convolution of the kernel with the image produces a spatial activation map of
that feature. This is repeated with N kernels, each producing a 3D tensor. The 3D
tensors are concatenated along the channel dimension to produce the output 4D tensor
with C' = N channels. If zero-padding and convolution with a stride of one are used,
a convolutional layer preserves the spatial size of the input, i.e., X;11 = X;, Yiiq =
Y;, and Z;11 = Z;. The learned parameters are the kernels, therefore the features
detectors are being learned rather than designed. The convolution operation gives
the local connectivity and weight sharing properties to ConvNets, which distinguishes
them from MLPs. The hyperparameters in a convolutional layer are the number of
kernels /V;, the spatial extent of each kernel, and the stride of the kernel.

Pooling layers are used to reduce the spatial size of an image representation.
The channel dimension size is preserved through a pooling layer, i.e., C;y; = C;.
Pooling layers have no learned parameters. The hyperparameters in a pooling layer
are the kernel size, the stride, and the pooling function. It is common to have a
kernel size of 2 x 2 x 2 and stride of 2 x 2 x 2, which results in downsampling by a
factor of two along each spatial dimension, i.e., X;; 1 = %, Y= %, and Z; ;1 = %
Max-pooling and mean-pooling are common pooling functions.

Nonlinearity layers are used after each convolutional layer and perform an
elementwise nonlinear function to an image representation. Nonlinearity layers do

not change the size of the image representation. There are no learned parameters in

a nonlinearity layer, and the only hyperparameter is the function type. The most
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common nonlinearity functions, sigmoid, hyperbolic tangent (TanH), and rectified

linear units (ReLu), are displayed in Figure 3.3.
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Figure 3.3. Common nonlinearity functions utilized in neural networks.

Transposed convolutional layers are used to achieve learnable upsampling.
Segmentation networks produce an output image with the same size as the input
image, so if pooling is used the image representation needs to be upsampled to
the original size. Conventional upsampling uses interpolation with nearest neighbor,
linear, bi-linear, or bi-cubic functions. Instead of defining the interpolation function,
transposed convolution learns the interpolation through a reverse convolution operation.
The learned parameters and hyperparameters in a transposed convolutional layer are
the same as a convolutional layer.

In addition to the core layers discussed above, in recent years batch normalization [62]
and dropout [134] have been highly successful and widely used. Batch normalization
is used to make the training process more stable and prevent “zero gradients”.

Zero gradients refer to the partial derivatives of the loss function with respect to
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the weights. When these gradients are close to zero the parameters do not get
updated and learning cannot proceed. Batch normalization is commonly used after
convolutional layers to normalized the output of the layer. Dropout layers are used to
prevent overfitting on the training data. A predefined percentage of output neurons
are randomly “dropped out”, i.e., assigned a value of zero, during the training process.
This is a similar idea to training an ensemble of models. Each pass through the

network a new model is being trained.

3.3 Architectures

There are different architectures designed for classification, regression, and
segmentation tasks. Classification architectures predict the probability that a input
image belongs to each of |Y| classes, therefore the number of neurons in the last layer
is |Y|. To transform a multi-dimensional tensor to a vector with |Y| neurons, these
networks use fully-connected layers which are equivalent to a layer in an ANN. The
first ConvNet architecture, LeNet [77], is illustrated in Figure 3.4, and is designed
for classification tasks. Regression architectures predict a continuous value rather
than a discrete class label. A regression architecture is the same as a classification
architecture, however, there is just one output unit. Segmentation architectures
predict the probability that each voxel belongs to each of Y| classes, therefore the
number of neurons in the last layer is the input image size times |Y|. A popular
segmentation architecture, U-net [119], is illustrated in Figure 3.5. The main difference
between classification and regression architectures compared to segmentation architectures

is segmentation architectures use learnable upsampling layers to recover the spatial

www.manaraa.com



25

resolution lost from pooling layers. Furthermore, segmentation architectures do not

use fully-connected layers.
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Figure 3.4. LeNet architecture from [77]

3.4 Supervised Training

Supervised training of a neural network requires training data which have
inputs and corresponding target output labels. Training is the process of optimizing
the weights of a neural network to find the mapping from inputs to outputs. A loss
function is defined that represents the dissimilarity between the predicted output
of the network and the desired output. The model is optimized to minimize the
dissimilarity. This is essentially fitting a model to the training data points; a model
which has millions of parameters. Training the network is a four step process:
forward-pass, loss function evaluation, backward-pass, and weight update. The forward-pass
propagates the input data through the layers of the network. The loss function
compares the output of the network with the input data label. The backward-pass,

or backpropagation, calculates the partial derivative of the loss function with respect
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Figure 3.5. U-Net architecture from [119].

to each weight in the network. Backpropagation is a recursive application of the chain
rule that allows for straightforward calculation of the analytical gradient of a complex
function with millions of parameters. Finally, the weights are updated using gradient

descent optimization, or some variant thereof.

3.5 Challenges
Deep learning using ConvNet models have been largely successful in computer
vision. However, these techniques have been developed for applications in natural
images. Many works are developed and evaluated on the publicly available ImageNet
dataset. ImageNet is a large-scale dataset for evaluating object detection and image

classification algorithms. The dataset consists of over 14 million RGB images with
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annotated labels belonging to more than 20 thousand classes.

Theoretically, ConvNets seamlessly extend from 2D networks to 3D networks
for handling medical images. However, there are challenges that need to be addressed
to allow practical usage of ConvNets in medical imaging. First, training ConvNets is
performed on a graphics processing unit (GPU) card which have thousands of cores.
This greatly increases the throughput of performing the matrix operations required
for training neural networks. However, current GPU cards have a limited amount
of memory; the memory demand for high-resolution volumetric images and deep
ConvNets exceed the available GPU memory. Second, annotated medical images are
not as readily available as natural images. Annotation of medical image requires
expert analysts, therefore high-throughput techniques such as crowdsourcing the
annotations are not available. Third, in medical datasets there is often a class-imbalance
when dealing with rare diseases making it a challenge to learn patterns in the underrepresented
class. Class-imbalance also often occurs for segmenting small structures in large
images. In the remaining chapters we address these challenges to enable usage of

deep learning with ConvNet models towards segmentation of pulmonary structures

in CT images.
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CHAPTER 4

LUNG SEGMENTATION IN HUMANS

Lung segmentation is a necessary pre-processing step in quantitative computed
tomography (qCT) analysis. Developing segmentation algorithms to robustly handle
different lung pathologies has been a challenging endeavor that has been studied for
several decades due to its necessity in clinical and research settings. Deep learning
frameworks using convolutional neural networks (ConvNets) have shown exceptional
performance at performing tasks in computer vision including image classification
and segmentation. In this work, a deep learning approach is used with a novel
multi-scale ConvNet model for learning segmentation in large volumetric images. The
proposed method was extensively evaluated on a diverse dataset consisting of 899 CT
images of subjects with chronic obstructive pulmonary disorder (COPD), idiopathic
pulmonary fibrosis (IPF), and lung cancer. The dataset consisted of images acquired
at multiple lung volumes including total lung capacity (TLC), functional residual
volume (FRC), residual volume (RV), and intermediate phases in 4DCT images.
Overall, the proposed method achieved an average symmetric surface distance of 0.234
mm and a median Jacaard index of 0.984 when compared to manual segmentations.

4.1 Introduction

Computed tomography (CT) produces 3-dimensional (3D) reconstructions of

the anatomy by measuring the attenuation of x-rays through a body at multiple

angles. CT is the modality of choice for imaging the intricate structures of the lungs.
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CT imaging produces high-contrast and high-resolution images which are necessary
for characterization of anatomical alterations in lung parenchyma, vasculature, and
airways. Technological advancements in CT scanners have enabled the acquisition
of images with sub-millimeter slice thickness in less than a second. This produces
large datasets with more than 500 slices that need to be reviewed. Automated image
analysis pipelines are critical for extracting and understanding the information in
these large datasets.

An initial step for automated pulmonary analysis is to generate a lung segmentation
that distinguishes pulmonary tissue from non-pulmonary tissue. It is important
that the lung segmentation includes both healthy and pathological regions so these
regions are not excluded from quantitative analysis. Quantitative CT (qCT) can be
used to characterize spatial patterns of lung aeration and extent of diseases such
as emphysema [86] and asthma [95]. Parametric response mapping (PRM) uses
image registration between inspiration and expiration images to quantify amount
of emphysema and airways disease [43]. These methods rely on an accurate lung
segmentation to produce reliable measurements. Image registration requires a lung
segmentation to limit define where the cost function should be evaluated. Furthermore,
varifold-based registration algorithms align surface representations which require a
segmentation to produce [100].

The low-density lung tissue is easily separated from the surrounding dense
soft tissue using simple threshold-based techniques [60, 54, 113, 6, 76]. The threshold

can automatically be determined for each image with optimal thresholding [60]. The
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trachea and main bronchi are removed from the threshold result using region growing
with automatic seed detection. Morphological operations are subsequently utilized to
fill any holes in the segmentation result.

Intensity-based lung segmentation algorithms are highly successful and widely
used in both clinical and research settings as these methods are computationally
efficient and easy to implement. However, these simplistic methods can be fragile and
not well suited for highly diseased lungs. Intensity-based algorithms fail to include
high-density pathologies, such as tumors and fibrosis. Peripheral pathologies are
especially challenging since there can be little or no contrast between the pathology
and the non-pulmonary tissue. Air in the stomach or intestines can erroneously
be included in intensity-based methods; this is especially problematic when there is
blurring near the diaphragm causing the air to appear connected to the lungs. Metal
artifacts resulting from pacemakers can result in both over- and under-segmentation
in the affected region.

To account for the short-comings of intensity-based methods, several model-based
methods have been developed to target pathological lung segmentation. Atlas-based
segmentation methods use image registration to map a known segmentation to the
image to be segmented [144, 130, 78, 162]. A collection of atlases were used in [130] to
form a probabilistic atlas to model the many variations in lung shape and appearance.
Uncertain voxels in the probabilistic atlas are classified by a kNN classifier. A
disadvantage of atlas-based methods is the image registration is time consuming and

a difficult problem in itself. In [144] an automated lung segmentation error detection
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algorithm was developed to detect failed segmentations by an intensity-based method.
If an error is detected an advanced atlas-based segmentation was used.

Statistical shape models (SSMs) and active appearance models (AAMs) are
another model-based segmentation method [19]. SSMs estimate shape variations from
a training dataset and subsequently fit the model to test cases using local appearance
information. A robust SSM was developed to segment pathological lungs in CT
images [136]. In [153], a 4D SSM was developed to segment lungs in 4DCT images.
While SSMs have been successful across a wide range of applications, they are sensitive
to model initialization and can fail in cases with weak edges. A review of SSMs used
in medical imaging analysis is given in [57].

Anatomical information is valuable for segmenting the lungs, especially in
presence of dense pathologies. Curvature of the ribcage closely follows the curvature of
the lung boundary, this information has been exploited for diseased lung segmentation [109,
88]. An anatomical model consisting of the chest wall, mediastinum, and large airways
was developed to guide lung segmentation in [12]. In [131], anatomical landmarks are
automatically detected at the carina, ribs and spine for initialization of a SSM.

Recently, the success of deep learning in medical imaging applications there
has been a paradigm shift from using rule-based image analysis pipelines to learning
directly from raw image data. Several works have proposed convolutional neural
networks for lung segmentation in CT images [56, 5]. A limitation of these methods
is the ConvNets are trained using 2D slices and not the full anatomy. Segmentation

in 3D incorporates spatial smoothness and contextual information that can help
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differentiate ambiguous regions on 2D slices.

In this work we propose a multi-scale ConvNet model for 3D segmentation of
lungs in CT images. The multi-scale model consists of a series of ConvNets which
are trained with images of increasing resolution. The motivation of this design was
to allow ConvNets to learn both global contextual features and local high-resolution
features in large volumetric medical images. The model was extensively evaluated
on 899 CT images of subjects with chronic obstructive pulmonary disorder (COPD),

idiopathic pulmonary fibrosis (IPF), and lung cancer.

4.2 Datasets and Reference Standards
4.2.1 COPDGene

The first dataset was obtained from the COPDGene clinical trial - a large
multi-center trial studying genetics and imaging phenotypes in COPD subjects [115].
All subjects used in this study had scans acquired at total lung capacity (TLC) and
functional residual volume (FRC) and a subset of subjects had scans acquired at
residual volume (RV). The dataset consisted of 2888 CT images from 1945 subjects.

4.2.2  SPIROMICS

The second dataset was obtained from the SPIROMICS clinical trial - a
multi-center trial studying subpopulations and intermediate outcomes of COPD subjects [23,
129, 22]. The dataset used in this work consisted of 225 CT images from 60 subjects

acquired at TLC and RV, see [129] for full imaging protocol.
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4.2.3 PANTHER-IPF
The IPF dataset was obtained from an ancillary study of PANTHER-IPF [93,
94]. The ancillary study study image derived IPF textural patterns in CT images and
their relations to disease progression [122]. The dataset used in this work consisted
of 305 images from 190 subjects. All datasets were acquired at TLC, see [122] for

complete imaging protocol.

4.2.4 Lung Cancer

The lung cancer dataset was acquired in coordination with a large clinical trial
studying functional avoidance radiation therapy (NIH CA166703) [101]. Each subject
has two 4DCT scans prior to treatment and two scans at 3 months, 6 months and
9 months post-treatment. 4DCT were reconstructed using retrospective amplitude
based sorting. Voice guidance was used to improve breathing repeatability. A subset
of data with manual segmentations was used in this work consisting of 1620 3D images
(162 4DCT images with 10 phases each) from 40 unique subjects.

4.2.5 Manual Segmentations

All manual lung segmentations were generated semi-automatically. Automated
segmentations were initially generated using Pulmonary Analysis Software Suite (PASS,
University of lIowa Advanced Pulmonary Physiomic Imaging Laboratory [55]). The

automatically generated segmentations were edited by a human analyst when necessary.
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4.3 Methods
4.3.1 Overview

A multi-scale ConvNet model is proposed for learning features with multiple
scale ranges. The model consists of a series of two Seg3DNet architectures that are

trained sequentially. Training and evaluation datasets consisted of human subjects

with COPD, IPF, and lung cancer.

4.3.2 Seg3DNet

Figure 4.1. Seg3DNet architecture. The number of channels for each image
representation is denoted in the lower left corner of each cube. For the encoder
module, we define N; = 2°+5 so that the number of activation maps increases by a
factor of two at each level. The number of kernels used in each convolutional layer
can be inferred by the number of activation maps in the layer’s output representation,
i.e., the first convolutional layer has Ny = 2°75 = 32 kernels. The relative spatial size
of the activation maps are drawn to scale. At each level the spatial dimensions of the
feature representation gets downsampled by a factor of two.
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Seg3DNet is a fully-convolutional network for volumetric image segmentation
with encoder and decoder modules, see Figure 4.1. The encoder network consists
of L resolution levels; each resolution level has two convolutional layers followed
by a max-pooling layers. Max-pooling is used to achieve a spatial downsampling
with a factor of two between resolution levels. The decoder network produces a
single-channel representation for each level using convolutional layers with a single
kernel. The final representations from each resolution level are integrated by concatenating
the representations followed by two convolutional layers. The output of Seg3DNet is

a probability map corresponding to the probability that each voxel is in the lung.

4.3.3 Multi-Resolution Model

Seg3DNet
Low Res

e y 1(x)

v

Phr(X)

Seg3DNet
High Res

{@ Downsample @ Upsample @ Concatenate

Figure 4.2. Multi-resolution model. = The upper pipeline corresponds to the
low-resolution model and the lower pipeline corresponds to the high-resolution model.
The dashed line connection links the two models, allowing the global information
learned in the low-resolution model to be used in the high-resolution model.
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The multi-resolution model is composed of a series of two Seg3DNet’s, see
Figure 4.2. The two networks have the same architecture and hyperparameters,
however, the first network is trained with low-resolution images and the second
network is trained with high-resolution images. This allows the two networks to
learn different ranges of features scales without having to tradeoff global context and
spatial smoothness for high-resolution.

The first Seg3DNet is trained using the entire 3DCT image giving the network
the capacity to utilize global contextual features. To accommodate the entire image,
the CT images and target segmentations are aggressively downsampled to 64 x 64 x 64
voxels. This corresponds to a downsampling factor of approximately eight in each
spatial direction.

The second network is trained on high-resolution images; all images are resampled
to have Imm? isotropic voxels for consistency. The input to the second network is
a two channel image consisting of the CT image and the prediction from the first
network. This allows the network to learn precise boundary information while still
integrating global information learned from the first network. At this resolution, the
network cannot train on the full images due to limitations in GPU memory. Axial

slabs of size 256 x 256 x 32 are extracted at various positions to cover the entire lung

field.

4.3.4 'Training
The multi-resolution model is learned by first training the low-resolution network

and subsequently training the high-resolution network. Initially, only the COPD and
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IPF datasets are used for training the model. Subsequently the model is fine-tuned
using the lung cancer dataset to allow inclusion of large lung tumors. Each dataset
was split into 80% training and 20% validation.

A binary cross entropy loss function is used, the loss for each voxel x is given

L(x) = =(y(x) log(y(x)) + (1 — y(x)) log(1 = §(x))) (4.1)

where y(x) is the true class label for voxel x, y(x) = 1 for lung and y(x) = 0 for
background, and g(x) is the predicted probability that voxel x belongs to the lung
class. The total loss is given by the average loss for all voxels. The loss function is
optimized with respect to the free parameters (the convolution kernels) using standard
backpropagation.

Adam optimization [67] is used for training with a learning rate of 5 x 107%.
Parameters are initialized using Xavier normal initialization [50]. Training was performed
using a P40 NVIDIA GPU with 24 GB RAM. Total training time is approximately

48 hours.

4.3.5 Post-Processing
The ConvNet predicts probability image indicating the probability that each
voxel is lung, with no distinction between the left and right lungs. Post-processing
is performed to obtain a final binary segmentation and then separate the binary
segmentation into left and right lungs. First a threshold of p = 0.5 is applied to
the probability image to obtain a binary image. Next connected component analysis

is performed and all components except the two largest are removed. The volumes
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of the two largest components are compared; if the volume of the second largest
component is less than half the volume of the first largest component, the second
largest component is removed. If two components remain, these are identified as left
and right lungs and no further processing is required. If only the first component is
retained the left and right lungs are assumed to be connected and lung separation is

performed.

4.4 Experiments and Results
4.4.1 Metrics

Performance of the proposed method was evaluated using the Jacaard index
for volume overlap and average symmetric surface distance (ASSD). The Jacaard

index is defined as

PN M]

(4.2)

where |- | is the set cardinality and PN M and P UM are the intersection and union,
respectively, of the set of voxels predicted to be lung in the automated segmentation
P and the set of voxels defined as lung in the manual segmentation M. The Jacaard
index has values ranging from zero to one, with one indicating perfect agreement.
ASSD was used to measure the distance between the predicted lung boundary Bp
and manually generated lung boundary By;. The distance between a voxel x and a

set of voxels on boundary B is defined as

D(x,B) = mind(x,y), (4.3)

yeB
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where d(x,y) is the Euclidean distance between voxels x and y. The ASSD between

Bp and B, is defined as

1
ASSD = o X ( 3 DBy + Y D(y,Bp)). (4.4)

x€Bp YE€BM

ASSD is greater or equal to zero, with zero being perfect agreement.

4.5 Results

The model was evaluated on 899 images: 576 COPDGene images, 51 SPIROMICS
images, 62 PANTHER-IPF images, and 210 lung cancer images. Segmentation
results of lung cancer subjects with large tumors are illustrated in 4.5. Each image
corresponds to a single phase of a 4DCT scan.

Quartiles of the Jacaard index and ASSD distributions for each dataset are
illustrated in Figure 4.6. The COPDGene and SPIROMICS datasets achieved higher
performance with median ASSD (Jacaard index) of 0.221 mm (0.990) and 0.222 mm
(0.987), respectively. The IPF and lung cancer datasets achieved median ASSD
(Jacaard index) of 0.383 mm (0.979) and 0.342 mm (0.978), respectively. Performance
was consistent for the three lung volumes in the COPDGene study as illustrated
in Figure 4.7. Figure 4.8 illustrates the distribution of ASSD and Jacaard index
for each subject. The tight distribution of errors within each subject demonstrate
the repeatability of segmentation performance across volumes of 4DCT and different
4DCT scans of same subjects.

Lung segmentations were used to limit the region of interest for qCT analysis.
For quality control, the mean HU calculated within the manual lung segmentation

was compared to the mean HU calculated within the predicted lung segmentation
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Figure 4.3. Representative results for six cases from the COPDGene dataset. a)
i icted mask, ¢) manual mask, d) difference image with under- and
agenta and cyan, respectively. Rows 1-2 are TLC, rows 3-4
are RV images.
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Figure 4.4. Representative results for six cases from the PANTHER-IPF dataset. a)
i icted mask, ¢) manual mask, d) difference image with under- and
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Figure 4.5. Representative results for five cases from the lung cancer dataset. a)

CT image, b) predicted mask, ¢) manual mask, d) difference image with under- and
over-segmentation in magenta and cyan, respectively.
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Figure 4.6. Quartiles of ASSD and Jacaard index distributions for the four datasets
used in this study.
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Figure 4.7. Quartiles of ASSD and Jacaard index distributions stratified by lung
volumes. Only the COPDGene dataset was included in analysis.
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Figure 4.8. Distribution of ASSD and Jacaard index for each subject in 4DCT dataset.
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Figure 4.9. Bland-Altman plot comparing mean HU evaluated inside the manual
lung segmentation (ppy) and the predicted lung segmentation (figy). Dashed lines

represent limits of agreement (LOA).
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Figure 4.10. Quartiles of the mean HU and standard deviation of HU stratified by
lung volume. Predicted lung segmentation is used for calculation. Only COPDGene
dataset was included in analysis.
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Figure 4.11. Quartiles of mean HU and standard deviation of HU stratified by dataset.
Predicted lung segmentation is used for calculation. Only TLC scans were included
in analysis.
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Figure 4.12. Quartiles of mean HU and standard deviation of HU by stratified lung
volumes in 4DCT scans.

using a Bland-Altman analysis, results are displayed in Figure 4.9. For the majority

of cases, the two lung segmentations produced mean HU calculations that differed by

less than 4 HU. The remaining analysis only used the predicted lung segmentation for

qCT measurements. Mean HU an standard deviation HU stratified by lung volume are

illustrated in Figure 4.10, only COPD datasets were used for this analysis. Similarly,

mean HU and standard deviation of HU across the volumes of 4DCT images are

illustrated in Figure 4.12 Results stratified by dataset are illustrated in Figure 4.11,

only scans acquired at TLC were used for this analysis to allow fair comparison to

PANTHER-IPF dataset which only had TLC scans.
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4.6 Discussion

A multi-resolution ConvNet model was proposed which consists of two ConvNets
for learning different scales of features in large volumetric images. Overall, the method
showed high performance on a diverse dataset of 899 CT images. This included images
from four large-scale clinical trials: COPDGene, SPIROMICS, PANTHER-IPF, and
a clinical trial studying functional avoidance in radiation therapy for lung cancer.
Datasets with COPD subjects (COPDGene and SPTROMICS), showed slightly higher
performance compared to the IPF and lung cancer datasets. COPD generally does
exhibit diffuse dense pathologies as seen in IPF and lung cancer subjects. This makes
COPD segmentation fairly straight forward and intensity-based methods perform
well. IPF and lung cancer or more difficult to segment, especially cases where the
pathology is in the peripheral lung. The proposed method nonetheless demonstrated
high performance for these challenging cases.

Images acquired at different lung volumes can show large variations in both
shape and appearance. The COPDGene dataset consisted of scans which were acquired
at three lung volumes: TLC, FRC, and RV. Furthermore, the intermediate phases of
4DCT scans were included in evaluation. The proposed method was able to segment
each of these phases with high accuracy. Consistent segmentation between different
lung volumes of the same subjects is important for reliable qCT analysis such as
calculating aeration at different lung volumes.

Identifying the lung boundary near the mediastinal region is notoriously difficult

and subjective. The blood vessels and airways enter the lung at the mediastinum and
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there is no clear definition on how much of these structures should be included in
the segmentation. Lung tumors at the mediastinum can further obscure the true
boundary. The proposed method was able to consistently segment this region to
match the training data. However, it was observed that the largest surface errors
were generally in this region.

The initial model trained using only COPD and IPF data failed to include
large tumors when applied to the lung cancer dataset. After fine-tuning the model
with the lung cancer dataset the model was able to include large tumors. In the
future, a single model could be trained using all data. A potential problem with this
could be the class imbalance between datasets with and without large tumors. This
may result in exclusion of tumors since there is a very low cost for miss-classification
of tumor voxels. While the lung cancer training dataset included 1410 3D images,
there are only variations from 28 unique subjects. In the future this dataset should
be expanded to account for more variations in tumor shape, size, and position.

For segmentation of 4DCT images, the multi-scale model was applied independently
to each phase volume. Analogous to how 3D segmentation is advantageous over 2D
segmentations, 4D segmentation would allow for incorporation temporal information
and may produce more temporally consistent results. This was currently not feasible
due to the limited amount of training data with all phase images included. In future
work, a recurrent neural network (RNN) will be explored for modeling the temporal
patterns in 4DCT datasets.

Many of the 4DCT scans from the lung cancer dataset have large artifacts near
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the diaphragm in one or more phases. These artifacts are produced by inconsistent
lung volumes between breaths resulting in duplication or missing anatomy. It is not
clear what the true lung segmentation should include for these cases, however, the
proposed method produced a reasonable segmentation which included the low-density
voxels with a smooth transition to high-density voxels. A 4D segmentation algorithm
would be ideal to handle these artifacts by utilizing the phase image with the least
amount of artifacts and producing temporally consistent lung shapes to match this
phase.

Aggressive downsampling is feasible for lung segmentation since it is a large
structure with high-contrast. Although the precise boundary location is compromised,
the lung field can still be easily distinguished in downsampled images. However, this
may not be appropriate for structures that have a smaller scale or lower contrast. For
example, the pulmonary fissures are approximately a voxel thin with low-contrast.
Fissures can be difficult to identify even in high-resolution images. The fissures cannot
be distinguished at all in downsampled images. Small blood vessels and airways are
also not visible. The proposed method would need to be modified to segment these

structures.
4.7 Conclusion
A multi-scale ConvNet was developed for learning segmentation in large medical
images. The proposed method was trained to segment lungs in CT images of diseased
subjects. The method achieved high performance on a diverse dataset of 899 CT

images consisting of various pathologies, lung volumes, and imaging protocols. In
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future work the method will be extended to incorporate temporal information in
4DCT datasets. The proposed method could be applied to segmentation of other

anatomical structures in medical images where global contextual information is important.
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CHAPTER 5

CROSS-SPECIES LUNG SEGMENTATION

Revision of: SE Gerard, J Herrmann, DW Kaczka, JM Reinhardt:
Transfer Learning for Segmentation of Injured Lungs Using
Coarse-to-Fine Convolutional Neural Networks. Image Analysis
for Moving Organ, Breast, and Thoracic Images, 2018.

Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a
challenging task due to the diffuse opacification in the dependent lung which results
in little or no contrast at the lung boundary. For segmentation of severely injured
lungs, a method which incorporates both local intensity and texture information
and global contextual information are important for consistent inclusion of injury.
A deep learning framework is proposed which uses uses a novel multi-resolution
convolutional neural network (ConvNet) for automated segmentation of lungs in
multiple animal species with models of ARDS. The multi-resolution model eliminates
the need to tradeoff between high-resolution and global context by using a cascade of
low-resolution to high-resolution networks. Transfer learning is used to accommodate
the limited number of ARDS training data: the model is initially pre-trained on
a human dataset and subsequently fine-tuned on an animal dataset consisting of
canine, porcine, and ovine images of subjects with injuries similar to ARDS. For
comparison the multi-resolution model is compared to two single resolution ConvNets:
a high-resolution ConvNet and a low-resolution ConvNet. The multi-resolution model
outperforms both a low-resolution and a high-resolution model. On the animal

dataset (N = 287)the multi-resolution model achieves an overall Jacaard index of
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0.963 compared to 0.919 and 0.950 for the low-resolution and high-resolution models,
respectively. The multi-resolution model achieves an overall average symmetric surface
distance of 0.438 mm compared to 0.971 mm and 0.657 mm for the low-resolution

and high-resolution modes, respectively.

5.1 Introduction

Computed tomography (CT) imaging produces high-resolution volumetric reconstructions
of the anatomy. The intensity values in a CT image reflect the density of the
tissue, producing high contrast between low-density lungs and the surrounding soft
tissue. High-resolution CT images allow for the intricate lung texture, vasculature,
and airway tree to be visualized. CT imaging is routinely utilized for diagnosing
lung pathologies, guiding treatment, monitoring progression, and characterizing lung
diseases.

Acute respiratory distress syndrome (ARDS) is a severe respiratory failure
that leads to diffuse inflammation, increased pulmonary vasculature permeability,
and loss of lung tissue aeration [21]. Radiographically, this condition presents with
diffuse bilateral opacification in the dependent lung [45]. While chest x-ray can
confirm diagnostics of ARDS, it does not capture injury localization and spatial
heterogeneity. CT has great potential for imaging ARDS as it can differentiate injury
phenotypes and correlate with patient response to mechanical ventilation [44]. CT
imaging is increasingly being used to characterize the spatial heterogeneity of injury
and regional mechanics of ARDS [65, 103, 38, 44, 102, 14]. Quantitative CT (qCT)

enables objective quantification of injury and has been used for evaluating response to
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mechanical ventilation protocols [9, 51, 104] and monitoring injury progression [16,
15]. Spatial and temporal heterogeneity of ventilation in ARDS can be measured
through registration of dynamically imaged lungs [58] or lungs imaged at multiple
inflation levels [65, 103, 15].

A precursor to qCT analysis ARDS is a lung segmentation which distinguishes
pulmonary tissue from the surrounding tissue. Intensity-based methods are widely
used for lung segmentation in CT images as there is high contrast between the
air-filled lungs and surround soft tissue. However, these methods fail to include dense
pathologies such as the non-aerated lung regions in ARDS subjects. Lungs with ARDS
are particularly challenging to segment as the injury is diffuse and predominately in
the posterior lung region. Peripheral injury is more challenging to segment compared
to interior injury because there is very little or no contrast between the injury and the
non-pulmonary tissue. Furthermore, consolidated regions have no textural features
that make it distinguishable from the surround soft tissue.

There have been several works that specifically target segmentation of subjects
with ARDS. A semiautomatic approach using segmentation-by-registration to segment
longitudinal images of rats with surfactant depletion was proposed in [158]. A
limitation of this approach is it requires a manual segmentation for the baseline
scan. Additionally, this method relies on a time-consuming image registration (4-6
hours). Similar segmentation-by-registration approaches were proposed in [108, 107].
Anatomical information from the airways and rib cage has been used to identify the

boundary between injured lung and soft tissue in injured lungs [25]. A wavelet-based
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approach was proposed in [139], however, this method may fail for severely injured
case where no edge information is present between the injury and soft tissue.

Manual segmentation is still widely used for segmentation of lungs with ARDS,
as current automated methods are not reliable. Manual segmentation is tedious, time
consuming, and subject to high intra- and inter-observer variations. Furthermore,
manual segmentations are performed on 2D slices which limits global context and
produces segmentations that are not smooth in 3D. For large datasets, such as
dynamic 4DCT images with multiple phase images, manual segmentation is not
feasible. Obtaining accurate lung segmentation for ARDS images is a major barrier
that prevents routine use of qCT for ARDS in clinical and research settings.

Recently, deep learning with ConvNet models have dominated across a wide
range of applications in computer vision, with the ability to perform image classification,
localization, segmentation, and registration at human-level accuracy. Deep learning
enables computers to learn directly from raw data rather than explicitly defining a
rule-based system or learning from human engineering features. Deep learning based
systems have shown to be more robust and computationally efficient. The majority
of development of deep learning using ConvNets has been on 2D natural images,
however, this technique has also been applied to medical imaging. ConvNets are
successfully detecting skin cancer [35], classifying lung nodules [127], and segmenting
various anatomical structures and diseases [110, 81, 119, 4, 128]. A survey on deep
learning applied to medical imaging is given in [82].

A major barrier to using ConvNets for medical image segmentation is that the
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memory requirement for large 3D images exceeds the limited amount of memory on
GPU cards. To overcome this barrier, most methods extract 2D slices or 3D patches
with local extent. These approaches sacrifice global information and 3D smoothness in
favor of high-resolution. Another barrier for using deep learning in medical imaging is
the availability of labeled training data. Deep learning methods require large training
datasets to fit the millions of free model parameters. It is especially challenging to
obtain expert annotated training data for volumetric medical images, which typically
have upwards of 500 2D slices in a single image. Manual annotation of these images
requires the time and cost of a medical expert. Furthermore, many interesting
research involves rare diseases yielding very small cohorts of subjects.

These challenges need to be addressed for successful application of ConvNets
for segmentation of ARDS lungs. Global contextual information, such as the surrounding
anatomical features, are necessary for segmentation of injured lung as local intensity
is non-distinguishable from surrounding tissue. Current methods that use 2D slices or
3D crops are not ideal as this removes global features. Furthermore, limited annotated
training data of ARDS lungs is available due to the time necessary to produce manual

segmentations. The main contributions of this work are as follows:

e Multi-resolution ConvNet model which has the capacity to learn both local and

global features in large volumetric medical images.

e Fully automated and computationally efficient segmentation of lungs with ARDS

in CT images.
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e Cross-species segmentation of ARDS subjects in a unified model using limited

annotated training data.

The novel multi-resolution ConvNet cascade makes use of both low-resolution
and high-resolution models to enable multi-scale learning. We hypothesize a method
that makes use of both global and local information is is superior to a model that
uses only local or global for this type of injury. The importance of global and
local information is explored by comparing the proposed model to a conventional
high-resolution, and which uses image crops, and a low-resolution model, which
uses aggressive downsampling. The high-resolution model sacrifices global contextual
information in favor of high-resolution information whereas the low-resolution model
sacrifices high-resolution detail in favor of global context. A transfer learning approach
is used which allows training the system with a limited amount of ARDS training data.
First a model is learned using a large dataset of human subjects, without ARDS.
Subsequently this model is tuned for cross-species ARDS segmentation is learned by

fine-tuning the human model using a dataset with multiple animal species.

5.2 Datasets and Reference Standards
For this study, we utilized a dataset consisting of CT scans from four species:
human, canine, porcine, and ovine. Hereinafter, the collection of human images
is referred to as the human dataset and the collection of canine, porcine, and ovine
images is referred to as the animal dataset. The human dataset is used for pre-training
and the animal dataset is used for fine-tuning. The human dataset consists of 3418

images, including 3113 images of subjects with chronic obstructive pulmonary disorder
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(COPD) and 305 images of subjects with idiopathic pulmonary fibrosis (IPF). The
animal dataset consists of 301 images of subjects with various experimental models
of ARDS: 76 images of canine subjects with an oleic acid model of ARDS, 152
images of porcine subjects with an oleic acid model of ARDS, 27 images of ovine

subjects with a saline lavage model of ARDS, and 46 images of ovine subjects with a

lipopolysaccharide (LPS) model of ARDS.

5.2.1 Human Dataset

The human dataset consisted of scans acquired from three large-scale clinical
trials: COPDGene, SPIROMICS, and PANTHER-IPF. COPDGene is a large multi-institutional
clinical trial studying genetics and imaging biomarkers of COPD subjects [115]. The
subset of subjects used in this study had images acquired at total lung capacity
(TLC), functional residual volume (FRC), and residual volume (RV). TLC scans
were acquired at 120 kVp and 200 mAs. FRC and RV scans were acquired at
120 kVp and 50 mAs. See [115] for full imaging protocol. SPIROMICS is also a
multi-institutional clinical trial studying subpopulations and intermediate outcomes
in COPD subjects [23, 129, 22]. The subjects used in this study had images acquired
at TLC and RV, see [129] for full imaging protocol. The IPF dataset was obtained
from an ancillary study of PANTHER-IPF [93, 94]. This study used high-resolution
CT images to identify IPF textural features and their relations to disease progression [122].
This dataset consisted of subjects with TLC scans, see [122] for full imaging protocol.
Lung segmentations for all human images were generated using Pulmonary Analysis

Software Suite (PASS, University of lowa Advanced Pulmonary Physiomic Imaging
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Laboratory [55]) followed by manual editing.

5.2.2 Animal Dataset
5.2.2.1 Porcine Dataset

The porcine dataset was obtained from a study of alternative mechanical
ventilation modalities to treat ARDS, approved by the University of lowa Institutional
Animal Care and Use Committee. Subjects approximately 10 to 15 kg in size were
scanned under baseline conditions and following maturation of acute lung injury
induced by infusion of oleic acid into the superior vena cava. 3DCT images were
acquired during breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, 20,
25, and 30 cmH50. 4DCT images were acquired during mechanical ventilation using
three ventilator modalities: conventional pressure-controlled ventilation, high-frequency
oscillatory ventilation, and multi-frequency oscillatory ventilation [58]. All images
were acquired using a Siemens Somatom Force 128-slice scanner, with 120 kVp, 90
mA s, and 0.5 mm slice thickness for 3DCT, or 80 kVp, 150 mAs, and 0.6 mm slice
thickness for 4DCT. The 4DCT images have a limited axial coverage of 5.76 cm,
which excludes the apex and base of the lungs. Manual 3DCT lung segmentations
were generated semi-automatically using PASS software and manually corrected.
4DCT lung segmentations were generated semi-automatically using thresholding and

connected components analysis followed by manual correction using 3D Slicer software [36].

5.2.2.2 Canine Dataset
The canine dataset was obtained from a study of respiratory mechanics in

subjects with ARDS, approved by the Johns Hopkins University Institutional Animal
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Care and Use Committee. Subjects approximately 22 to 33 kg in size were scanned
under baseline conditions and following maturation of acute lung injury induced by
infusion of oleic acid into the pulmonary artery. 3DCT images were acquired during
breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, and 20 cmH5O.
Images were acquired using a Siemens Somatom Sensation 16-slice scanner, with
137 kVp, 165 mA s, and 2.5 mm slice thickness. Manual lung segmentations were

generated semi-automatically using PASS software and manually corrected.

5.2.2.3 Ovine Dataset 1

The first ovine dataset was obtained a study of prone vs. supine positioning to
treat subjects with ARDS, approved by the Massachusetts General Hospital Institutional
Animal Care and Use Committee. Subjects approximately 20 to 30 kg in size were
scanned following acute lung injury induced by saline lavage. 3DCT images were
acquired during breath hold maneuvers at inflation levels corresponding to end-expiration
(PEEP 5 ¢mH>0), end-inspiration (tidal volume 8 mL/kg), and mean airway pressure
during mechanical ventilation. Images of prone subjects were flipped to align anatomical
features to a corresponding supine orientation. Images were acquired using a Siemens
Biograph combined PET-CT scanner, with 120 kVp, 80 mA s, and 0.5 mm slice
thickness. Manual lung masks were generated semi-automatically using PASS and

manually corrected.

5.2.2.4 Ovine Dataset 2
The second ovine dataset was obtained a study of subjects with ARDS, approved

by the Johns Hopkins University and University of lowa Institutional Animal Care
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and Use Committees [37]. Subjects approximately 25 to 45 kg in size were scanned
under baseline conditions and following acute lung injury induced by intravenous
infusion of lipopolysaccharide . 3DCT images were acquired using respiratory-gated
CT imaging at inflation levels corresponding to end-expiration and end-inspiration
during mechanical ventilation. Images were acquired using a Siemens Somatom
Sensations 16- or 64-slice scanner, with 120 kVp, 250 or 180 mA s, and 1.5 or 1.2 mm
slice thickness. Manual lung segmentations were generated semi-automatically using

PASS and manually corrected.

5.3 Methods
5.3.1 Overview

A multi-resolution ConvNet model is proposed for the task of lung segmentation
in CT images (Section 5.3.3.3), designed to handle severely injured lungs across
multiple animal specials. The multi-resolution model is compared to each individual
component of this model: a low-resolution model (Section 5.3.3.1) and a high-resolution
model (Section 5.3.3.2). All models make use of the same underlying ConvNet
architecture, called Seg3DNet (Section 5.3.2), however, the spatial resolution of the
training data is varied. Training using images of different resolutions results in a
different range of feature scales learned by each model. Due to the limited number of
scans for each species in the animal dataset, transfer learning from the human dataset

is used for training all models (Section 5.3.4).
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Figure 5.1. Seg3DNet architecture. The number of channels for each image
representation is denoted in the lower left corner of each cube. For the encoder
module, we define N; = 2°+5 so that the number of activation maps increases by a
factor of two at each level. The number of kernels used in each convolutional layer
can be inferred by the number of activation maps in the layer’s output representation,
i.e., the first convolutional layer has Ny = 2°7% = 32 kernels. The relative spatial size
of the activation maps are drawn to scale. At each level the spatial dimensions of the
feature representation gets downsampled by a factor of two.

5.3.2 Convolutional Neural Network
The underlying ConvNet architecture used in each of the three models is a
fully convolutional network (FCN) called Seg3DNet [49], see Figure 5.1. The network
has an encoder and decoder module, similar to the popular U-Net architecture [119],
however, Seg3DNet is extended to three spatial dimensions and the decoder was
designed to use less memory. The input to the network is an image with three
spatial dimensions and the output is an image with three spatial dimensions and

the same size as the input image. The input image is transformed to increasing

www.manharaa.com




62

abstract image representations using a hierarchy of network layers. Each intermediate
image representation has three spatial dimensions and a fourth dimension representing
different feature types. Henceforth, we will refer to the fourth dimension as the
channel dimension, analogous to that of an RGB images. The output of Seg3DNet is
an image with |Y'| channels, where Y is the class set. The task of lung segmentation is
treated as a binary segmentation problem, i.e., |Y| = 2 where the classes correspond
to lung and background.

The encoder network consists L resolution levels. Each resolution level [;
consists of two convolutional layers followed by a max pooling layer. The decoder
network upsamples the image representation at the end of each level back to the input
image resolution using deconvolution layers and combines the multi-scale features
using two subsequent convolutional layers. Each voxel in the output image is a floating
point number corresponding to the probability that the voxel is part of the lung field.

Convolutional layers use a kernel with spatial extent of 3 x 3 x 3 voxels and
zero-padding is used such that the spatial size of the image representation remains
unchanged. Max pooling with a kernel size of 2 x 2 x 2 voxels and stride of 2 x 2 x 2
voxels is used which effectively spatially downsamples the image representation by a
factor of two along each spatial dimension, with the number of feature maps remaining
unchanged. Batch normalization and a rectified linear unit (ReLu) activation function
are used after each convolutional layer, with the exception of the last layer. The last
layer uses a softmax vector nonlinearity (Equation 5.1). The output of the softmax

function gives the conditional probability distribution that a voxel x belongs to each
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yey.
efy(x)

PY =y|x) = m

(5.1)

For a binary classification, the predicted probability distribution can unambiguously
be represented as a single floating-point number. The predicted probability that x
belongs to the lung is denoted as g(x). The predicted probability that x belongs to

the background can be inferred as 1 — y(x).

5.3.3 Models
5.3.3.1 Low-Resolution Model

The low-resolution model consists of a single Seg3DNet which is trained using
aggressively downsampled CT images and lung segmentations. All training images
are downsampled to constant image size of 64 x 64 x 64 voxels, regardless of original
size. This corresponds to a downsampling factor of roughly eight along each spatial
dimension. At this image size, the entire image can be input to the network which
allows for global features to be learned, however, exact boundary information is lost
with the downsampling. Gaussian smoothing is performed prior to downsampling to
avoid aliasing. The output of the low-resolution model is upsampled to the original

resolution using b-spline interpolation.

5.3.3.2 High-Resolution Model

The high-resolution model consists of a single SegdDNet which is trained using
high-resolution CT images. The CT images are resampled to isotropic voxels: 1 mm
isotropic voxels for humans, dogs, and sheep and 0.6 mm isotropic voxels for pigs.

The downsampling is performed to achieve consistent voxel sizes and relative scale
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between scans and species. This corresponds to a downsampling factor of less than
two along each dimension. At this high-resolution, the entire CT image cannot fit into
GPU memory. Therefore, axial slabs of size 256 x 256 x 32 are sampled at multiple
axial positions are used for training the model. This limits the amount of global
context that can be learned by the high-resolution model, as features from the entire

lung field cannot be learned.

5.3.3.3 Multi-Resolution Model
The multi-resolution model consists of two Seg3DNet’s, utilizing both a low-resolution

model and a high-resolution model, and linking the models to allow information
learned by the low-resolution model to by exploited by the high-resolution model.
The two Seg3DNet’s are trained sequentially. In the first stage, the low-resolution
model is trained on aggressively downsampled images as described in Section 5.3.3.1.
In the second stage, a high-resolution model is trained, similar to the model described
in Section 5.3.3.2, however, the low-resolution model prediction is included in the
input in addition to the high-resolution CT image. Combining the low-resolution and
high-resolution models eliminates the necessity of choosing between global contextual
information and precise boundary detail. The multi-resolution model is illustrated in

Figure 5.2.

5.3.4 Training
Transfer learning [99] is used for training all models. A model is pre-trained
using the human training dataset. The model learned from the human dataset is used

to initialize the animal model and fine-tuning is then performed using the animal
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Figure 5.2.  Multi-resolution model. The upper pipeline corresponds to the
low-resolution model and the lower pipeline corresponds to the high-resolution model.
The dashed line connection links the two models, allowing the global information
learned in the low-resolution model to be used in the high-resolution model.

dataset.

Due to the limited number of animal scans with ARDS, a five-fold cross
validation is performed for training the animal model. The animal dataset is split
into five groups (approximately 60 images per group), four of the groups are used for
training and the performance is evaluated on the left out group. This is performed
five times, leaving out a different group each time and evaluating on that left out
group. This allows all images in the animal dataset to be used for both training
and evaluation. Each of the five groups have the same number of images and
approximately equal representation of each species. The five-fold cross validation

is done for training all models, using the same splits for fair comparison.
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A binary cross entropy loss function is used for training, the loss for each voxel

x is given by

L(x) = —(y(x)log(y(x)) + (1 — y(x)) log(1 — §(x))) (5.2)
where y(x) is the true class label for voxel x, y(x) = 1 for lung and y(x) = 0 for
background, and (x) is the predicted probability that voxel x belongs to the lung
class. The total loss for each image is given by the average loss over all voxels in
the image. The loss function is optimized with respect to the free parameters (the
convolution kernels) using standard backpropagation. Adam optimization [67] is used
for training, a learning rate of 5 x 107 is used for pre-training, and a learning rate
of 5 x 107° is used for fine-tuning. Prior to pre-training, all free parameters are
initialized using Xavier normal initialization [50]. The networks are trained using a
P40 NVIDIA GPU with 24 GB RAM. Total training time is approximately 48 hours

for each model.

5.3.5  Post-processing

The output predicted by each model is a lung probability image, i.e. an image
with floating point values between 0 and 1 representing the probability that each
voxel belongs to the lung. We adopt a simple post-processing step to obtain a
final binary lung segmentation. A binary threshold is applied to the probability
image using a cutoff of p = 0.5, which is empirically determined. Subsequently, 3D
connected component analysis is performed on the thresholded image. For images
from the human dataset, the two largest connected components, are retained and

any remaining components are discarded. The two components correspond to the
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left and right lungs. In some cases the left and right lung form one connected
component, in these cases only the largest connected component is retained. This is
determined automatically by taking the ratio of volumes for the two largest connected
components. For the animal dataset, only the largest connected component is retained
and any other components are discarded. For all animals used in this study, the left

and right lungs are connected by a middle lobe.

5.4 Experiments and Results
5.4.1 Metrics

Lung segmentation performance was evaluated by comparing the computer
generated segmentation to a manual lung segmentation. Two metrics were used to
assess agreement: the Jacaard index and average symmetric surface distance (ASSD).

The Jacaard index is a measure of volume overlap given by

PO M|

where |- | is the set cardinality and PN M and P UM are the intersection and union,
respectively, of the set of voxels predicted to be lung in the automated segmentation
P and the set of voxels defined as lung in the manual segmentation M. The Jacaard
index has values ranging from zero to one, with one indicating perfect agreement.
ASSD was used to measure the distance between the predicted lung boundary Bp
and manually generated lung boundary By;. The distance between a voxel x and a

set of voxels on boundary B is defined as

D(x,B) = grlelg d(x,y), (5.4)
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where d(x,y) is the Euclidean distance between voxels x and y. The ASSD between
Bp and B, is defined as

ASSD = m X ( > DxBu)+ Y D(y,Bp)). (5.5)

x€Bp yEBM
ASSD is greater or equal to zero, with zero being perfect agreement.
5.4.2 Quantitative Comparison of Models
The proposed multi-resolution model, the low-resolution model, and the high-resolution
model were quantitatively evaluated by comparison to manual segmentations. A

paired t-test was performed to test for significant differences between the models.

5.4.3 Results

Surface renderings of the different models are illustrated in Figure 5.3. Figure 5.4
illustrates multiple axial slices of a porcine subject with the multi-resolution model
result. Surface renderings, minimum intensity projections, and maximum intensity
projections are illustrated in Figure 5.5 to emphasize extent of injury and the inclusion
of this injury in the predicted segmentation.

The distributions of ASSD and Jacaard for each model are displayed in Figure 5.6.
Paired t-tests revealed that the multi-resolution model had a significantly lower
(higher) ASSD (Jacaard) compared to both the low-resolution model and the high-resolution
model (p < 0.001), and the high-resolution model had a significantly lower (higher)
ASSD (Jacaard) compared to the low-resolution model. Maximum surface distance
(Max SD) distributions for each model are displayed in Figure 5.7. The results show

that the multi-resolution model achieved lower Max SD and the high-resolution had
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Figure 5.3. Surface rendering or lung segmentations porcine, canine, and ovine
subjects in rows one, two, and three, respectively. (a) axial slice of CT, (b) manual
(¢) low-resolution model, (d) high-resolution model, (e) multi-resolution model.

A
y

Caudal Cranial

Figure 5.4. Multi-resolution network results for a porcine subjects. Multiple axial
slices show the diffuse lung injury.
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Figure 5.5. Multi-resolution model results. Left to right: contour of predicted
segmentation overlaid on CT image, surface rendering of predicted segmentation,
minimum intensity projection of voxels included in predicted segmentation, and
maximum intensity projection of voxels included in predicted segmentation.

the largest Max SD. Results stratified by species and cross validation fold are displayed
in Figures 5.8 and 5.9, respectively. The results show all models performed best on
the porcine datasets and worst on the ovine datasets. All folds of the cross validation

performed equally well.
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Figure 5.6. ASSD and Jacaard index distributions over all animal species.
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Figure 5.7. Distribution of maximum surface distance for each model.
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